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CHAPTER I

INTRODUCTION

f..,

1.1 Motivation

4.

ft

Scattering occurs when an electromagnetic wave impinges on an object and creates

currents in that object which reradiate other electromagnetic waves. The electromagnetic

wave may be of any frequency, but most of our every day encounters with scattering involve

light. As technology advances, however, scattering from the invisible spectrum, particularly

'ft

microwaves, becomes more and more important. Already words such as microwave dish,

radar, and stealth airplane have become part of our everyday vocabulary. Microwaves have

invaded our lives by helping us cook, watch television, talk on the telephone, and detect the

launch of submarine ballistic m-,issiles. Public concerns involving the impact of microwaves

ft.

on the environment and health, and military concerns involving very low sidelobe antennas

and targets with a low radar cross section (RCS) point to a need for controlling the scattering

of electromagnetic waves at microwave frequencies.

Currently, three primary methods exist to reduce microwave scattering from an object:

covering it with absorber, changing its shape, and detuning it through impedance loading.

Absorbers convert unwanted electromagnetic energy into heat. An example is lining an

anechoic chamber with absorbers. Changing its shape channels energy from one direction he

to another, changes dominant scattering centers, or causes returns from various parts to

coherently add and cancel the total return. Examples include rounding sharp dges, making

an antenna conformal to the surface of an airplane, and serating the edges of a compact range f

reflector. Impedance loading alters the resonant frequency of an object. Examples include

making a radome transparent to signals in the frequency band of the antenna and detuning.

: Aborbrs onvet uwaned eectomanetc enrgyint hea. A exmpleis inig 1

anecoicchaber ~thabsrber. Cangng ts sapechanelsenegy rom ne ireti.

'*'?" ' ' ~ (tttM ff. v f tJ tt'ff~f t, t ~f * ~ ~ * * .
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the support wires of a broadcast antenna. Often, a combination of these techniques is

necessary to reduce the scattering to an acceptable level. Although many scientific theories

are available for analyzing scattering from objects, the process of reducing the scattering is

presently as much an art as a science.

Of the three techniques, absorbers have the most attractive featurp They have a broad

bandwidth, attenuate the return in many directions, and may be used to reduce scattering

from an object after the object is designed. In contrast, shaping an object does not reduce

the scattering in all directions, may not even be possible once the object is past the design

stage, and may not reduce the scattering to desired levels. Impedance loading is inferior

because it has a narrow bandwidth, is not usually feasible past the design stage, and is not

practical for large reflecting surfaces.

Absorbers have low scattering levels because they convert most of the incident electro-

magnetic energy into heat and only a small percentage is reflected or transmitted. In the

absorber the amount of energy converted into heat (absorbed) depends on the size of the

imaginary part of the index of refraction. The higher the imaginary part, the more energy

the material absorbs.

An excellent example of absorption occurs in the heating of food in a microwave oven.

The incident microwave energy is absorbed by the water molecules in the food, and the food

gets hot. Water absorbs the energy, because its permittivity has a large imaginary part at

microwave frequencies. Frozen food, however, heats slowly because the permittivity of ice

has a small imaginary part at microwave frequencies.

1.2 Problem Statement

Before trying to control scattering from complex shapes, such as an antenna or airplane,

one should try to develop methods to control scattering from simple objects. A very simple

object is a two dimensional strip. It is infinitely thin, has a finite width, and an infinite

length. The scattering pattern of the strip depends upon its width and material composition.

Varying these two factors provides a means for controlling the radar cross-section (RCS) of

the strip. The goal of this thesis is to synthesize resistive tapers for the strip that produce

desired bistatic scattering and backscattering patterns.

For a molecular description of how a microwave oven works, see the article by Walker [1987].
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1.3 Background

Many references repo't a variety of techniques for calculating the currents induced in

strips by incident plane waves and the corresponding scattered fields. Morse and Fesh-

bach[1953] express the scattered field of a perfectly conducting strip in terms of a Mathieu

eigenfunction expansion. A similar eigenfunction expansion is not available for resistive

strips, however. Senior[1979a] derives asymptotic expressions for the field scattered by a

strip with uniform resistivity. More recently, Richmond[1985] solves for the currents induced

in a thin dielectric strip using a Galerkin method. Unlike Senior's approach, this approach

numerically solves for the currents in a strip that has a finite thickness. Butler[1985] ap-

proaches the problem by expanding the current in the integral equation using Chebychev

polynomials as basis functions, then solving the integral analytically.

Controlling the scattering patterns of strips has its roots in earlier studies of impedance

loading of objects. Chen and Liepa [1964] showed that a zero broadside return of a cylinder

less than two wavelengths long can be achieved by proper choice of a central impedance load.

Schindler, et al. [1965] extended this work to longer cylinders. They found that getting

zero backscattering from dipoles greater than one half wavelength long or at angles other

than broadside requires multiple passive loads. Harrington and Mautz [1972] take one

step further by describing a reactive loading synthesis procedure for obtaining a current

that produces a far field pattern that is the least mean-square approximation to a desired

pattern. Resistive and impedance loading is also important in reducing the scattering from

the edges of reflector antennas to get low sidelobes [Bucci and Giorgio, 1980; Yazgan, 1987].

Finally, Ray and Mittra have shown scattering results from conductive strips with resistive

loads [1983].

Attempts have been made to alter the scattering patterns of a strip by smoothly varying

its resistivity, rather than edge loading. Senior[1979b] discusses the possibility of reducing

the backscattering of a resistive strip at edge-on incidence. He states that the return at

edge-on incidence gets smaller as the strip's resistivity gets larger. The return approaches

zero only when the strip resistivity approaches oo . When the strip resistivity equals 1885

lS/square, the edge-on return from the strip is 26.6dB below the value for a perfectly

conducting strip . Senior mentions that the return may be minimized by optimally tapering
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the resistivity of the strip from a maximum value at the front edge to perfectly at the rear

edge. He does not suggest any possible resistive tapers for controlling scattering from the

strip, though. Ray and Mittra[1983] find that a resistive load on the edges of a metallic

strip reduces the induced edge currents for E-polarization, but causes current spikes at the

junction between the metal and resistive sections of the strip. They suggest eliminating

the discontinuity by smoothly tapering the current from a maximum at the metal to a

minimum at the highly resistive edges. Senior and Liepa[1984 show that a parabolic taper

on a resistive half plane significantly reduces edge scattering. This same principle may be

applied to both edges of a strip. Wang and Liepa[1985] use a parabolic resistive taper on the

ground plane of a monopole antenna to reduce the effects of the ground plane edge on the

antenna pattern. The resulting radiation pattern and antenna impedance approaches those

of a monopole above a large ground plane. Haupt and Liepa [1987] describe the physical

optics (PO) resistivity synthesis techique presented in Chapter 3.

1.4 Overview

hi order to improve upon these previous efforts of "guessing" a resistive taper that will

reduce the scattering pattern's sidelobes, this thesis goes a step beyond by developing and

experimentally verifying synthesis techniques for specifying the level of the backscattering

and bistatic scattering patterns of a strip over a desired angular sector. The speciications

include relative sidelobe level, specular level, and nulls at designated locations.

Chapter 2 presents the necessary definitions and mathematical and numerical tech-

niques for analyzing the strip current density and scattering patterns of a strip due to an

incident plane wave. The integral and physical optics (PO) equations for the strip current

density are derived. Agreement between these two techniques increases as the strip resis-

tivity increases. A large part of the chapter concerns choosing an appropriate numerical

method for solving the integral equation approach. For the purposes of this thesis, colloca-

tion with pulse basis functions and PLU decomposition and back-substitution combine to

give accurate, yet computationally fast results.

Chapter 3 describes how to synthesize a resistive taper that produces a desired strip

current density that in turn produces a desired scattering pattern in the far field. The

B.
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resistive taper is derived from a given desired current distribution by substituting the de-

sired current distribution into either the integral equation or PO equation and solving for

the strip resistivity. Many current distributions have already been developed in antenna

theory to get desired far field antenna patterns. One of these current distributions can

be substituted for the strip current density in either the integral or PO equation to find

the strip resistivity. The strip resistivity derived in this manner does result in the desired

bistatic scattering or backscattering pattern. Low sidelobes are demonstrated via the Tay-

lor current distribution and nulling is demonstrated via the Shore-Steyskal null synthesis

technique. The low sidelobe resistive taper derived through the integral equation approach

has real and imaginary parts, while the resistive taper derived through the PO approach

is real. Since PO also produces the desired low sidelobe scattering pattern with excellent

accuracy, the PO taper is more desirable. The integral equation approach is needed to

produce the proper complex resistive taper for nulling, though.

Chapter 4 describes the four-point probe technique used to measure the resistivity of

a sheet. Expressions are derived for calculating the dc voltage and current density on the

sheet due to the outer current probes of a four-point probe. These equations are solved

numerically using finite elements and Successive Over Relaxation, and the results for a

constant resistive sheet are compared with analytical results. Since the analytical results

are confined to measuring the resistivity of a constant resistive sheet near the center of the

sheet, the numerical approach is used to investigate measuring tapered resistive sheets.

Chapter 5 describes the impact of errors in the resistive taper on the induced strip

current density and the scattering patterns. Resistive errors are assumed to be random

and/or correlated. These errors give rise to perturbations in the strip current density,

which inturn give rise to perturbations in the resulting scattering patterns. Expressions

for the current and scattering pattern perturbations are derived. The impact of the errors

is described in terms of the average rms error between the error and no-error current and

scattering patterns quantities and in terms of sidelobe level deviation between the error and

no-error scattering patterns.

Chapter 6 gives the experimental bistatic scattering measurement results on a tapered

resistive sheet. The experimental set-up, calibration, and measurement procedures are
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described. The experimental results are compared with numerical results and show good

agreement for the metal plate and a reasonably good agreement for the tapered sheet. The

discrepancies in the low sidelobe scattering measurements are due to a number of sources.
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CHAPTER II

CALCULATING THE FIELDS SCATTERED BY RESISTIVE STRIPS

This chapter presents several methods for calculating the strip current density and

scattered fields of a resistive strip due to plane wave incidence. These methods may be

divided into two approaches: 1) integral equation and 2) Physical Optics (PO). The integral

equation approach is the more accurate; however, PO has several attractive features. First,

it is simple to calculate compared to the integral equation approach. Second, it gives

excellent results for highly resistive or tapered resistive strips. Third, it is a possible seed

for iterative methods. Unfortunately, this application proved fruitless in the present study.

Fourth, it serves as a synthesis method for low sidelobe real valued resistive tapers as shown

in Chapter 3.

A large portion of this chapter concerns the numerical solution of the integral equations.

The first step is to convert the integral equations into matrix equations via the method of

collocation, then solve the matrix equation for the strip current density. Pulses and Cheby-

chev polynomials are the two types of basis functions used in the collocation technique.

Pulses proved faster and more accurate than Chebychev polynomials for the applications

in this thesis. Three matrix solving techniques for finding the coefficients of the basis func-

tions are presented: 1) PLU decomposition and back-substitution, which turned out to be

the best method for the problems in this thesis; 2) iterative methods including relaxation,

secant, and Steffensen's; and 3) conjugate gradient. The advantages and disadvantages of

each method are presented.

The final step in the analysis involves calculating the two-dimensional bistatic scattering

and backscattering far field patterns.

7

%%5%'> Aj,~
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2.1 Derivation of the Scattering Equations for a Resistive Strip

This section derives the field equations for calculating the strip current density induced

on a resistive strip by an incident plane wave. Two methods are considered. First, an inte-

gral formulation in terms of the current induced on a strip is derived from magnetic vector

potentials. This method is the more accurate and traditional approach to the problem.

Second, A PO formulation for the current is derived from Geometrical Optics. Although

less accurate than the integral equation approach, it serves as a seed for iterative methods,

gives very accurate results for resistive strips, and is simple to compute compared to the

integral equation approach.

2.1.1 Integral Equation Formulation

In scattering problems, the total electric field is the sum of the incident and scattered

electric fields.

* 9_

-i =-PT -2.1-

Superscripts indicate total field (T), incident field (I), and scattered field (s). Each term in

(2.1-1) is considered separately in the following pages.

The incident field is a plane wave of either E-polarization 2

1' =iEe j3k~cos o+ysin i) (2.1-2a)

H =(-i sin 0 + j cos 0o)Hoej k( = °  
4o+y s") (2.1-2b)

or H-polarization

E' =( sin eoc - jcos ¢o)Eoejk( es 0o+yif 4ok) (2.1-3a)

AFH =Hoe zcos 4,,+Ysin €5) (2.1-3b)

where

2 An ei'" time dependence is assumed and suppressed.
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4o = direction of incident plane wave relative to the x-axis

k = wave number = w7. = -

w = radial frequency = 24f

f = frequency of incident wave

A = wavelength of incident wave

Po = permeability of free space

co = permittivity of free space

Eo = constant amplitude of incident electric field

Ho = constant amplitude of incident magnetic field

0- 0Eo _ /

= characteristic impedance of free space

An E-polarized plane wave has E perpendicular to the plane containing the propagation

vector and the normal to the interface (the x-y plane). Likewise, an H-polarized plane wave

has H perpendicular to the x-y plane. Figure 2.1 shows an E-polarized plane wave incident

at an angle q0 on a strip of width 2a, where a is expressed in units of A.

Within a thin strip the total electric field is related to the total strip current density3

(J in amps/meter) by [Harrington and Mautz, 1975]

ET iJ(214
E ngent = [ + M(C - )(2.1-4)

where

3 The strip is assumed to be made of materials that have the same permeability as free space (p = Mo). Otherwise,
a magnetic current density term (V x M) should be included in the total current.
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E~= j~A-V*A(2.1-8)

A = (2.1-9)

where

={J_-i, H-polarization
JZ2, E-polarization

F = ='i direction to source point on strip

G~p!7' =Green function = 1 HC(2)(kI 5F -

= direction to observation point = zi + yj

For E-polarization, 7 Aji = 0 leaving

Now, all the E-polarization components of (2.1-1) have been derived. Assembling (2.1-

2), (2.1-5), and (2.1-10) to make (2.1-1) produces

H~ k ,O k = i7(x)J.(x) +- k J.(a.)H(')(kIx - T'I)dT' (.-1

Turning to H-polarization, the second term ill (2.1-8) does not equal 0. Instead,

V. Az- f J' J(.T ) 1PH(2)(klp - z'I)dz-' (2.1-12)

and

VV k~ - i J 2 (')H () (kIp - -IdT
-'= f 1-

+ k f- J2,(z')H (2 )(kIp - x'j)k~ x'I) (2.1-13)

Substituting (2.1-9) and (2.1-13) into (2.1-8) and solving for the scattered field gives
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a1 H( 2)(j
- _4 a J -z' 1 H 2)(klp- x'l)dx' (2.1-14)

Next, substitute the tangential components of (2.1-2), (2.1-5), and (2.1-14) into (2.1-1) to

get

Hosin Ooe c 0. = 77()J-(z) + k J,(,,) H (2 (klz - 'l)dx' (2.1-15)

Equations (2.1-11) and (2.1-15) relate the incident electric field to the induced strip current

density. These equations are exact only when 7 = 0, since the resistive boundary condition,

ET = RJ, is only an approximation. 5 Finding an accurate representation of J depends

upon a judicial choice of the numerical solution.

2.1.2 Physical Optics Formulation

Instead of numerically solving (2.1-11) and (2.1-15) for the strip current density, the

strip current density may be approximated with a PO formulation. The PO current expres-

sions are derived using geometric optics and relating the total tangential electric field to

the strip current density via the strip resistivity. Starting with E-polarization, the reflected

fields above the strip are

E =pEoe k(To o- Yi"o-) (2.1-16)

- = (isino + jcos¢o)Hoe jI c O o- inO) (2.1-17)

and the transmitted fields below the strip are

-t = riEoe k( ojo+ysi, o) (2.1-18)

H" = r(-isin~o + Pcosko0 )Hoe l k< zc °Ot+Vsin ) (2.1-19)

where the superscripts i, r, and t stand for incident, reflected, and transmitted fields respec-

tively, and p, and r are the reflection and transmission coefficients. The incident electric 0

and magnetic fields are given by (2.1-2) and (2.1-3).

SThe approximation assumes that R approaches a finite value as t - 0 and as a -. oo.

* 9 .t CtV ' 4 %V NV*
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Three field equations relate the three unknowns, p, T, and J. The first equation says

that the tangential components of the electric field are zero at the interface.

x (Et+ ET - p t ) = 0 (2.1-20)

Substituting (2.1-2), (2.1-16), and (2.1-18) into (2.1-20) gives the transmission coefficient

in terms or the reflection coefficient.

7- 1 + P, (2.1-21)

The next equation says that the tangential magnetic fields are discontinuous at the interface

by the strip current density.

x (H- + H r - Ht) = (2.1-22)

Substituting the magnetic field quantities into this equation relates J z, pr, and r.

(I - -r)sino,,H = (2.1-23)

Substituting (2.1-21) into (2.1-23) and solving for J. leaves

J. = -2PrsinoH oe Izo&oo (2.1-24)

The final equation says that the total tangential electric field enijaQ the strip cu- rent density

times the strip resistivity.

E' + Er = RJ, (2.1-25)

Eoe jkXOa
°

O . + prEoe ° °oo - RJz (2.1-26)

Solving this equation for p, gives

-1
p- (2.12-27)1 + 2r7sino

p p
p.

' .€r2.',; " ".d . ,'r ° . ,. '2 ".:"° " " " "" '-," .°-" "-'.,'.," "".L"" "" "" """'" """'"""""'""" " "" "'"'""" -," " "." " ' " ?'."" "J" "3'
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Substituting (2.1-27) into (2.1-24) produces the final result with J in terms of the known

quantities -q, 0Io, Ho, and k.

Jo .Sruk H~e jkcoO (2.1-28)
.5 + q sin 0o

A similar procedure for H-polarization gives

Jo(X) = Sino Hoe jko,¢o (2.1-29)
7+ .5sin o2

Equations (2.1-28) and (2.1-29) provide simple, but powerful relationships between J

and 77. These relationships are the key to synthesizing low sidelobe resistive tapers to control

the scattering patterns of strips in Chapter III.
4-

2.1.3 Comparison of the Integral Equation and Physical Optics Approaches 4.

The PO derivation makes two approximations. First, the resistive sheet is assumed to

be infinite in the x-y plane. Therefore, all edges are ignored. Second, (2.1-25) applies to

an infinitely thin strip, just as in the integral equation approach. One can con lude that

the integral equation and PO approaches agree very well under any conditions when the

edge contribution is small compared to the total strip current. Examples of such conditions

include

1. Scattering angles near broadside of a large strip

2. Highly resistive strips

3. Tapered resistive strips

A major goal of this thesis is to emphasize the excellent agreement between the PO and

integral equation approaches under the above conditions [Haupt and Liepa, 1986].

Table 2.1 compares the two approaches for several types of resistive strips by listing

the computed average rms error between the integral equation and PO approaches. As

expected, the rms errors of the perfectly conducting strip are much higher than that of the

resistive strip. The level of the errors change very little with increasing N (the number of

points on the strip at which the current is calculated), but a much smaller value of N for

a resistive strip will produce the same level of errors as a higher value of N for a perfectly

conducting strip of the same width. Another observation is that increasing the width of

-'I
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the strip decreases the level of the errors. This result is also expected, since the interaction

between the edges gets less the farther apart they are. Graphs of the resistive tapers,

currents, and scattering patterns similar to the examples in Table 2.1 appear in Chapter 3.

2.2 Solving the Integral Equations Using Collocation

One numerical method for solving (2.1-11) and (2.1-15) is collocation. The first step in

the method is to expand the strip current density as a sum of complete, orthogonal basis

functions.

J-(X) = ZanJn(X) (2.2-1)
n=.: 1

where

a S
J w(X)Jn(Z)Jm(Z)dz =-,

w(x) =weighting function

J,, =set of orthogonal basis functions

bt, =Kronecker delta

a, =weighting coefficient

The infinite summation in (2.2-1) may be approximated by N terms.

N

J'(X) E a,.Jn() + r(z) (2.2-2)

The residual error, r(x), approaches zero as N approaches -, when J,(x) is a piecewise

continuous function.

After substituting the approximation of J, into (2.1-11) and matching the boundary

conditions at N collocation points on the surface of the strip, the following series of equations

results:

N

g, k "= a,.l(m)Jn(m) + k H(2(kl, - zldx],m 1,2,.., N
Ea[7X)J(-) rn.l -- 0

(2.2-3) '4.
.] .5
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COMPARISON OF PO AND INTEGRAL EQUATION APPROACHES

2a=4A E-polarization H-polarization
77 N OUcuram O

0
curph O'bi O

0
bk Ocuram 17curph O'bi (7bk

0.0 40 0.191 8.309 0.105 0.119 0.335 15.757 0.104 0.106
60 0.266 7.865 0.085 0.095 0.382 15.085 0.088 0.091

2.0 40 0.098 2.021 0.018 0.015 0.050 2.677 0.009 0.007
60 0.031 1.912 0.014 0.011 0.025 3.278 0.007 0.005

3(E) 2  40 0.037 1.504 0.048 0.016 0.031 1.901 0.005 0.004

60 0.036 1.339 0.039 0.013 0.025 2.379 0.003 0.003

40dB Taylor 40 0.026 1.689 0.018 0.014 0.029 2.091 0.025 0.014
ff=12 60 0.023 1.312 0.014 0.011 0.022 1.835 0.013 0.007

2a=6A E-polarization H-polarization
77 N Oeuram tYeurph Orbi O'bk O'curam acurh O'bi Obk

0.0 60 0.152 6.831 0.081 0.091 0.270 13.685 0.088 0.081
90 0.216 6.439 0.066 0.073 0.319 12.910 0.073 0.070

2.0 60 0.073 1.643 0.015 0.012 0.036 2.190 0.007 0.006
90 0.022 1.558 0.012 0.010 0.018 2.674 0.005 0.004

3(x) 2  60 0.022 1.308 0.022 0.011 0.019 1.551 0.004 0.003
90 0.020 1.123 0.018 0.008 0.015 1.93. 0.003 0.002

40dB Taylor 60 0.018 1.311 0.014 0.011 0.019 1.835 0.013 0.007
f-=12 90 0.017 1.064 0.011 0.008 0.016 1.952 0.009 0.004

N = number of points at which the current is calculated
i7 = normalized strip resistivity

O'euram = average rms current amplitude error

4yeurph = average rms current phase error
abi = average rms bistatic scattering error

'bi = average rms backscattering error

Table 2.1 - Comparison of the integral equation and PO optics approaches.

.2,~t f f ~t ~ ~t ~ ~ . j f ~ tt~~
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When (2.2-3) is put into the matrix form Aa = V it is written as(all a12 a. a1N~ (Qii 21 VI
a21  a22  a2N a V2 (2.2-4)

aN1 aN2 ... aNN (aN) V N

where

mV~ =eJkzrncosik

af a2(Z )nXm Jn,(x')H (2)(klxn - x'j)dz' (2.2-5)amn =77( m)Jn( ,,,)+ ._

The matrix equation is solved for the unknown coefficients, an, which are then substituted

into (2.2-1) to get an approximation of the current on the strip.

A similar equation for H-polarization is

N k af (~2)(lm~I
Hoeikx- cosi °

- an[ i(Xm)Jn(Xm) + k H l - Jn( ,')d im = 1,2,.., N

(2.2-6)

When (2.2-6) is put intc the matrix form of (2.2-4), the matrix elements are given by

amn =.7(X)Jnm) + Jn( -') . - )dz, (2.2-7)
4~ _-a kjirn -Z1

For the best results, the basis functions should be orthogonal, complete, easy to com-

pute, and be able to match the boundary conditions. The list of possible basis functions

is huge, and many trade-offs exist in selecting "the best ones" to use for a given problem.

The two basis functions chosen for this application are pulses and Chebychev polynomials.

They represent two extremely different types of basis functions. The pulse basis functions

simplify the problem tremendously, are local (do not extend over the entire width of the

strip), and do not allow accurate interpolation between collocation points. On the other

hand, the Chebychev polynomial basis functions require more difficult numerical compu-

tations, are global (extend from -a to a), and allow very accurate interpolation between

collocation points.
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2.2.1 Collocation with Pulse Basis Functions

Pulse basis functions are commonly used for solving collocation problems in electro-

magnetics because of their simplicity. The strip is divided into N segments of equal size

with the collocation points at the center of each segment. A pulse exists only over one of

these segments and is represented by

11( fi, , m I < It (2.2-8)
Jnlzm)= 0, otherwise

where A Zm+1 - T. Substituting the pulses into (2.2-3) results in

Hoe= E 01,n [6mni}(xm)J,(m)
n+=l

+ 4 a+LA H (kIx x'l)dz m 2,.., N (2.2-9)
~ -+(n-1)A -

where

,m=n

L 0, otherwise

The integral in (2.2-9) is straight-forward to evaluate except at x=x'. At this point Hankel

function has a weak (logarithmic) singularity that requires a special integration procedure.

The off-diagonal elements of (2.2-4)are found using Gauss Chebychev Quadrature 6

, ~ ~kAr ,-(2) k , A t

a' aEmn Y2 Hr L 1 y2H(2) [I- yi] ), m n (2.2-10a),. 8L -2i~

This equation is valid for diagonal and off-diagonal elements of the matrix as long as one

of the quadrature points does not fall on one of the collocation points.

6 The Gauss Chebychev Quadrature integration formula is [Pearson, 1983]

J b f(y)dy _(b-a) -a

VI(2 -2 2

where zi are the ztros of the L' order Chebychev polynomial given by

zi coir(i LO.5)l m

-L q .... 1 L% +

z~ c e[LJ, m ,2.
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The diagonal elements of (2.2-10a) are very slowly convergent because of the singularity

in the integration interval. This singularity may be avoided by splitting the Hankel function

into its real and imaginary parts and making a simple transformation of variables [Boyd,

1986] for the Neumann function:

e2={~x2,,rx'}; r>zx'(2.2-11)
-x z

The diagonal elements now become S,

a =n 7(0 ) + 7 JJ (kJ I kzm - z'j) dz' + j f jlnzmean ) ed (2.2-12a)

where

J1 =zeroth order Bessel function

Y_ =zero th order Neumann function

The exact transformation for the Neumann function integral has LL equal to -oo; however,

a much smaller negative value will produce excellent results. This form of the integral

converges much faster when evaluating the singularity than the integral (2.2-10a). If the

spacing between collocation points is < - and the lower limit is approximated by -8,

then this integral is accurate to four decimal places when evaluated with a 10 point Gauss

Chebychev Quadrature rule.'4

When the incident field is H-polarized, the matrix elements are given by

Off-diagonal:

az + a - (n - 1)A H )(2rx a-(
4F- + a-(-) (n - 1)

zx,n + a- nA

kAr f yH() (k +zma-nA +.A[1 y
8 L ',

U ~i= 1

m n m n (2.2-13a)

Diagonal: "
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n -(n), + J1(klx, - z'l)dx'+ j2 Yi(eZ)ezdz (2.2-14a)a~n =17ll-) a 'n-l) A  
2 fLL

Midpoint integration gives a cruder approximation to the integrals, but is accurate

enough for the applications considered. It assumes that the current and the Hankel function

are constant over the interval of integration. The Gauss-Chebychev quadrature integration

assumes that the current is constant over the interval, but not the Hankel function. Since

the Hankel function varies faster over the interval than the current, this method is more

accurate than midpoint integration.

Midpoint integration is attractive, though, because of its simplicity. It requires far

fewer function evaluations than the Gauss-Chebychev quadrature formula, which makes it

considerably faster. The midpoint integration formulas are given by

aEmm =1(Zm) + kA[1 - j-(0.0287983 + InA)] (2.2-10b)
4 W

k mn =4AH()(klxz, - zml) (2.2-12b)
4

k 11
a,mm -77(x,,z) + A[.5 - j(o.0287983 + InA + 2 A (2.2-13b)

4 Wri_2

a Hmn = - tn ttAi [Hf(2) (kkm~ - Xn - -5A I + H (2)(klxm x,- .5A 1)] +

kAH2)(kln - Zn (2.2-14b)
4

A comparison of the two integration methods appears in Table 2.2. Generally, agree-

ment between the two integration techniques increases as the number of collocation points

increases, because the Hankel function variations are less for a smaller interval. Thus,

assuming the Hankel function is constant over the interval is a better approximation as

the interval gets smaller, and midpoint integration gets more accurate. The agreement

also increases as the strip resistivity increases, because the integral contribution in (2.2-11)

and (2.2-15) decreases relative to the contribution from the resistive term. Since the two

methods produce very similar results, midpoint integration is the best choice because it is

computationally much faster.

2.2.2 Collocation with Chebvchev Polynomial Basis Functions

S, '- W. . -.. .-. . ,.,. t. - .. t .c t ..-. .t .urn
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AVERAGE RMS ERRORS BETWEEN INTEGRATING THE
MATRIX E LEMENTS WITH MIDPOINT INTEGRATION

VS. GAUSS-CHEBYCHEV QUADRATURE INTEGRATION

o = o- 0900 = 300 _
?7 N Orcuramp Iecurph Urbi O'curamp O7curph Orbi abk

0.0 20 0.02745 0.67735 0.03354 0.05728 1.12111 0.03046 0.03627
40 0.02297 0.60610 0.01014 0.02624 0.51957 0.00346 0.00830
60 0.02311 0.45290 0.00749 0.02369 0.37244 0.00225 0.00582

2.0 20 0.00065 0.23010 0.00199 0.00542 0.36435 0.00177 0.00177
40 0.00023 0.12972 0.00047 0.00111 0.13954 0.00026 0.00038
60 0.00021 0.08735 0.00032 0.00032 0.07776 0.00009 0.00024

3(L) 2  20 0.00175 0.36399 0.00405 0.02513 0.82835 0.00121 0.00201
40 0.00185 0.30643 0.00323 0.00472 0.29316 0.00017 0.00250
60 0.00218 0.21998 0.00311 0.00118 0.16022 0.00008 0.00230

40dB 20 0.00136 0.42698 0.00359 0.02875 0.84281 0.00073 0.00336
Taylor 40 0.00254 0.35564 0.00446 0.00548 0.30659 0.00011 0.00341
Y=12 60 0.00284 0.25493 0.00405 0.00141 0.17236 0.00004 0.00299

N = number of points at which the current is calculated

q = normalized strip resistivity
0acuram = average rms current amplitude error

eurph -= average rms current phase error

abi = average rms bistatic scattering error

abi = average rms backscattering error

Table 2.2 - Comparison of the midpoint and Gauss-Chebychev quadrature

integration schemes for finding the elements in the collocation matrix.

* .}~~~. .
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Another alternative to the basis functions in (2.2-1) is Chebychev polynomials:

J =() = T,_-(') = cos[(n - 1)cos- -)] (2.2-15)

a a

In this case, the optimum spacing of the collocation points are given by the zeros of the

Nth order Chebychev polynomial:

xi == COS irUi (2.2-16)

the following equations result upon substituting (2.2-15) into (2.2-3) and (2.2-6):

E-polarization

H =N an.[7(zm,)T,,-(--) + J T.,(aT)Jo(klm - 'l)dx'

n=1

- J-J Tn-i(a)Yo(kl. -x'l)dx'

k f T.-I( a)Y.(klz- 'l)dx'

k f T _-(Z)Yo(kl,. -z'l)dx',m 1,2,..,N (2.2-17)
J4 J~+ aa

H-polarization

N k f +kiz' l ' ,
E anr[7(z\nT(n- \ J m-

n=a 4 a - 1 a

k f- Yi(klz - x'j) x'

4J kIx, - 'I T-(a )xk/ fa, i(kl , - x'), ,' ,

-4J , k Izm- -I) T-( )dx' ,m = 1,2,..,N (2.2-18)

The integrals involving only the J, term are computed with an adaptive quadrature

irtegrator that uses 10-point Gauss-Legendre and 21-point Kronrod formulas on both halves

of a subinterval. This integration subroutine (QKSQ) may be found in the NAAS library.

Before solving the Yo integral, however, it is split into three integrals. The two end

integrals do not contain any singularity and may be evaluated with the adaptive quadrature
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routine. On the other hand, the center integral does contain a singularity. When the interval

from x - to z + is small, then certain approximations aid in accurately evaluating the integral

over that interval. The first approximation replaces Y. and Y1 with their small argument

representation.

1'0(() = 2 (z) + -] (2.2-19)

Y"(z) = [In() + 2 (2.2-20-)

Wr 2 ir 7rz

Next, the Chebychev polynomial is assumed to be constant over that interval. Now, a

simple transformation of variables and the formula fJ ln(z)dx = 1 results in

E-polarization:

k + k

- ] Tv.,(-)oiC~ - z')dx' = iTn 1  -j(.0287983 + In A)] (2.2-21)

H-polarization:

k +~. X' Yo~klxm - XF) , k 2~!~[± IQ4721 11--j Tn,1 ( ) - da, = ATn-(- [A~j(.47217-I A - 2
a klx,-m 4 a7

(2.2-22)

One must be careful to choose a sufficiently small interval where this approximation

holds. When N is large the Chebychev polynomial oscillates very rapidly and the interval

should be quite small. A good size for the interval is twice the distance from the edge of

the strip to the first collocation point. This interval has the advantage of getting smaller

in size as N increases, and when m=n=1 or N, only two of the integrals over the Neumann

functions in (2.2-17) or (2.2-18) need to be performed.

2.2.3 A Comparison of Collocation with Pulse and Chebychev Basis Functions

In the applications considered in this thesis, pulse basis functions produce better results

than the Chebychev basis functions for several reasons. First, the Chebychev polynomials

must be integrated over the entire interval length of 2a for each matrix element, whereas

the pulses are integrated over a length of -. In addition, as N increases, the Chebychev
N€

N diin s nrae, h hbce
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polynomials require more integration points because of the higher oscillation frequency.

The integration is very time consuming due to the many function calls for the Hankel func-

tion. Thus, the major time factor when using Chebychev polynomials is not solving the

matrix equation, but setting-up the A matrix. Second, Chebychev basis functions promise

exponential convergence only when there are no singularities on the interval. The Hankel

function singularity when the source and observation points coincide slow down the conver-

gence speed of these basis functions. Third, the pulse basis function's A matrix becomes

diagonally dominant as the strip resistivity of the strip increases, whereas the Chebychev

basis function's A matrix does not. The diagonal dominance speeds the convergence of

iterative techniques. Fourth, the ultimate goal is to find the far field scattering patterns

and not the strip current. The Fourier Transform from the current to the far field tends to

smooth the errors. Hence, the calculation of the strip current does not require the accuracy

given by more sophisticated methods such as using chebychev polynomial basis functions.

As a result of the above discussion, pulse basis functions are used in this thesis and

the integral is evaluated with midpoint integration. This combination produces excellent

results while conserving computer time.

2.2.4 Choosing the Number of Basis Functions

It is important to choose enough basis functions to get an accurate result. However,

minimizing the number of basis functions reduces the amount of computer time. Is there a

good value for N so that computer time is minimized without sacrificing accuracy?

An answer to this question depends upon the desired output. An accurate representa-

tion of the strip current density requires more basis functions than an accurate representa-

tion of the scattering patterns. The far field calculations tend to average current errors, so

they have less of an impact on the scattering patterns.

Table 2.3 shows some interesting results with regards to choosing N. The average rms

bistatic scattering errors (ab) and backscattering errors (ubt) are calculated by comparing

t he scattering patterns when N=20, 40, and 60 with the scattering patterns when N=100.

One striking observation is that far fewer basis functions are necessary to obtain an accurate

answer for a resistive strip than for a perfectly conducting strip. The resistive strip errors

when N=20 are at least as good as the perfectly conducting strip errors when N=60. When

,'if
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the scattering patterns for the cases in the table were graphed, they were not noticably

different as N increased from 20 to 60. Although, graphs of the strip current were slightly

different as N increased. A sampling interval of 12 match points per wavelength is deemed

adequate for the examples presented later.

2.3 Techniques for Solving the Matrix Equation

The matrix equation, (2.2-4), for the strip current density may be solved in one of several

ways. Of the techniques investigated, PLU decomposition and back-substitution is the

recommended approach in this thesis because the matrices are small and well-conditioned.

Another approach is iterative methods. Three types of iterative methods are considered:

1) relaxation, 2) secant, and 3) Steffensen's acceleration. The final approach is conjugate

gradient. This approach is currently receiving considerable attention in the literature. Often

Conjugate Gradient is considered an iterative method. Here, it is not for two reasons. First,

unlike the iterative methods mentioned, Conjugate Gradient is guaranteed to converge in

a finite number of steps if the A matrix is properly formed. Second, it does not require a

relaxation constant.

Iterative methods and conjugate gradient are generally only used for large, sparse, or

near singular matrices. The matrices in this thesis do not fall under any of these categories.

The motivation for trying these techniques is to use the PO current as a first guess to

speed the convergence of the algorithms. Unfortunately, the PO current failed to increase

convergence much faster than assuming an inititial guess for the current of 0.

2.3.1 PLU decomposition and back-substitution

PLU decomposition and back-substitution is a form of Gaussian elimination where the

lower diagonal matrix (L) contains the factors that converted the matrix A to an upper

triangular matrix (U) using Gaussian elimination. U and L replace the original A in the

computation. The P matrix is a partial pivoting matrix that multiplies A in order to

interchange rows in the matrix to reduce numerical error.

The NAAS (Numerical Analysis and Applications Software) library has complex PLU

decomposition and back-substitution subroutines. Here, the subroutine CGECO forms the

PLU decomposition and the subroutine CGESL performs the back-substitution.
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AVERAGE RMS SCATTERING PATTERN ERRORSt AS
A FUNCTION OF N, THE NUMBER OF PULSES

PULSE
BASIS FUNCTIONS E-polarization H-polarization

17 N olbi (o' =90o)  bk (. = 900) Ok

0.0 20 0.0552 0.0544 0.1131 0.1364
40 0.0198 0.0179 0.0242 0.0379
60 0.0085 0.0075 0.0096 0.0147

2.0 20 0.0039 0.0081 0.0040 0.0039
40 0.0008 0.0016 0.0021 0.0018
60 0.0003 0.0005 0.0011 0.0010

3(l)2 20 0.0026 0.0055 0.0020 0.0023

40 0.0005 0.0012 0.0017 0.0014
60 0.0001 0.0004 0.0006 0.0005

40dB Taylor W=12 20 0.0066 0.0074 0.0240 0.0174
40 0.0014 0.0015 0.0035 0.0026
60 0.0005 0.0005 0.0011 0.0008

ta is the rms errror between the scattering patterns with
N=20, 40, and 60 and the scattering patterns with N=100

N = number of points at which the current is calculated

Y7 = normalized strip resistivity

O'curam = average rms current amplitude error

9eurph -= average rms current phase error
Ubi = average rms bistatic scattering error r
ab = average rms backscattering error

Table 2.3 - The average rrns error between scattering patterns with either

20, 40, or 60 basis functions and one with 100 basis functions is listed.

-- " "
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A total of 1(4N +6N- 10N) real multiplications and -N 3 +N 2-N real additions

are required for PLU decomposition and back-substitution. Only 2N 2 + 2N real multipli-

cations and N 2 - N real additions are required for back-substitution alone. When the same

A matrix is used to solve for the current with a new right-hand-side, the U and L forms

remain the same. The new current is found by back-substitution. Thus, when calculating

backscattering patterns, only 2N 2 + 2N real multiplications and N' - N real additions

are required for calculating the current at each backscattering angle once the initial PLU

decomposition is done. Backsubstitution is mach faster than a single step in any of the

iterative methods or conjugate gradient.

2.3.2 Iterative Methods

An iterative method for solving the matrix equations in section 2.2 begins with an

initial guess j 0) and computes a sequence of vectors (J 0 , j 1 , ... , j k) that converges to the

correct answer, J, , as k -- oo. If one had an excellent first guess, the iterative method

may converge faster than a first guess of 0. Since the PO current is rather simple to

calculate and models the actual current reasonably well (especially for resistive strips), it

is a good candidate for the first guess. As it turns out, however, PO does not substantially

improve the convergence of these algorithms. When calculating backscattering patterns,

a good first guess is the current from the previous backscattering angle. This guess does

significantly improve the convergence of the algorithms. When calculating backscattering

currents with iterative methods, one should begin at o = = 900 and procede to = 00,

because convergence is much faster at € =900 than at =0 ° . Having the current from the

previous angle as a first guess for the current at edge-on incidence substantially reduces the

convergence time.

Three iterative methods are presented in this section. The first method, relaxation,

appears again in Chapter 4 for the solution of a finite difference equation. The second

method, secant method, is a finite difference form of Newton's method. The third method,

Steffensen's acceleration, has the greatest stability of the three methods.

2.3.2.1 Relaxation

7 Four real multiplications constitute one complex multiplication and two real additions constitute one complex
addition

v %*)V,* 
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Relaxation is a modification to the Gauss-Seidel procedure. Its formula for a matrix

solution is given by [Burden and Fares, 1985]

rn-1 N
j(k) j (1- 1) + '0~)~ ~l (k-1)] 231

amvm. - E amn.J( - E/ mJ(231
a m = n.=m+1 n

where

m =row number in vector or matrix

n =column number in vector or matrix

k =iteration number

w =relaxation number

amn =element of the matrix in (2.2-4)
I!

vm =element of incident field vector in (2.2-4)

A starting value for the strip current density, j(o), is either the PO approximation or 0.

The relaxation constant determines the convergence speed of the algorithm. An opti-

mum value of w is [Ferziger, 1981]

2
Wow (2.3-2)1 + -( A

where ,,,z is the maximum eigenvalue or spectral radius of the A matrix. Ra.'her than

calculating \m., one often plots w versus the number of iterations to convergence. A very

sharp dip in this graph occurs at t! - value of wop.

For the matrices in this thesis, w is less than 1, so the method is known as an under

relaxation method. This method requires 4N 2 + 2N + 2 real multiplications and 2N 2 + 3N

real additions per iteration. If the relaxation method converges in !N steps, then it is as

fast as PLU decomposition and back-substitution. However, even one iteration takes longer

than back-substitution alone.

2.3.2.2 Secant Method

a

'a
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The secant method is Newton's method with the derivative approximated by a finite

difference formula. This method searches for a J5 (x) such that a function f(Jo(x))=0.

Putting the E-polarized integral equation into this form gives

f (Jo() = - Ho e 7° *° + ii(z)J (z) + j J,(x')H(2(klx - x'I)d' 20

m-1 N

f (($,)) =vm±ZNamn,,k) + E amnJ~k-') (2.3-3)

where J is the current update given by (2.3-1) and Jr-') is the last update. The iterative

formula is given by

j(k) j(k-1) f(k)j(k-1)) - k-2 (2.3-4)

1-1

Two initial guesses are necessary for starting the algorithm. For bistatic scattering and

V backscattering at 4o = 900, the first guess is the PO approximation of the current. The

second guess comes from one iteration of the the relaxation algorithm. For the remaining

backscattering angles, the first guess is PO and the second guess is the current from the

previous angle.

This method requires 8N 2 + 4N real multiplications and 4N 2 + 9N real additions

per iteration. If the secant method converges in -tN steps, then it is as fast as PLU

decomposition and back-substitution. However, even one iteration takes longer than back-

substitution alone.

2.3.2.3 Steffensen's Acceleration

Steffensen's acceleration accelerates the convergence of an iteratve technique, usually

fixed point iteration. Here it is used to accelerate relaxation. The formula for the algorithm

is given by [Burden and Fares, 1985]

.4-
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J(O) =PO approximation or 0

rn-I N

J)--(1 - w)J(0° ) + vm : - amnJ() - E amiJ(°)] = relaxation

v?-I N
j() -(1- w)Jl) + [vm- Z aMnJ() + S am J =)] relaxation

"mm n=1 -- m+1

(j,)- '-4

J ) =J)- _ ) 0 Steffensen's acceleration

p

if J ) does not have the desired accuracy, then substitute JM() into J( ° ) and repeat the

steps.

This method requires 8N 2 + 8N + 4 real multiplications and 4N 2 + ION real additions

per iteration. If Steffensen's acceleration converges in 2N steps, then it is as fast as PLU

decomposition and back-substitution. However, even one iteration takes longer than back-

substitution alone. .4.

2.3.3 Conjugate Gradient p

The conjugate gradient algorithm combines some of the major advantages of PLU de-

composition and back-substitution, and iterative methods. First, as in iterative methods,

the round-off and truncation errors are limited to the final step. Thus, this method pro-

duces more accurate results for near singular matrices than does PLU decomposition and

back-substitution. Second, as in PLU decomposition and back-substitution, this algorithm

converges to the answer in a finite number of steps. Thus, this method converges in N steps,

whereas iterative methods do not.

The conjugate gradient algorithm is described below [Sarkar and Arvas, 1985].
1

Initializat

j(O) =PO approximation

r (° ) -V - AJ(°)

p(0) :Atr(0))€

P
Ne
6 W

%
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The following steps are repeated until some tolerance is achieved or the number of

iterations=N:

I II r( 112
(k ) =. I I r ( ) I I I

j(k-i-) =j(k) + Cr(k)p(k)

r(kt) =r(k) - aCk)Ap (k)

IIr(k)II

p(k+l) =Abr~e+') + 8 (k)p(k)

The norm of a vector is given by

IIrII= Z t

where r' is the complex conjugate of vector element ri.

This method requires 8N 2 + 16N real multiplications and 1ON 2 real additions per

iteration plus 8N2 real multiplications and 2N real additions in the initialization. If the

conjugate gradient method converges in N steps, then it is as fast as PLU decomposition

and back-substitution. However, even one iteration is slower than back-substitution alone.

2.3.4 A Comparison of the Matrix-Solving Techniques

The two criteria for choosing a matrix solving technique are accuracy and speed, with

accuracy being the more important. Accuracy is checked by determining if a technique

converges to the correct answer and if the numerical errors are tolerable. Speed is checked

by counting the total number of floating point operation (FLOPS) - multiplications and

additions.

Tables 2.4 to 2.7 help compare the five choices of matrix solving routines. Tables 2.4

to 2.6 show the number of iterations needed for one of the iterative methods or Conjugate

Gradient to converge to the correct answer (rms error of .01) when calculating the strip

current for an incident plane wave at 900. An "*" means the method diverges and an

s" means it slowly converges (more than 100 iterations). There are four resistive tapers:

,

V 2A- p U t
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17 = 0,1,2, and x2; two polarizations: E- and H- polarization; two sizes of strips: 2a=2A

and 8A or matrices that are 24 x 24 and 96 x 96, respectively; and two choices of an initial

ciess: PO cuirrent and 0.

Table 2.7a lists the number of real FLOPS for a single iteration. The numbers from

Tables 2.4 to 2.6 may be substituted into the formulas to determine the total length of time

taken by one of the techniques. If the total number of FLOPS is less than the number in the

last column, then the technique is faster than PLU decomposition and back-substitution.

The number of FLOPS in a single iteration for any of the iterative methods or conjugate

gradient is slower than back-substitution alone.

The number of FLOPS for PO is listed for two reasons. First, to show how fast this

method is compared to all the other methods. Second, to show how much longer an initial

guess of the PO current takes to calculate. If PO reduces the number of iterations by 1,

it is worth using. The hope is that it will substantially reduce the number of iterations,

especially for resistive strips.

The first check for accuracy is to determine whether the methods converge to the correct

answer after a reasonable time. Tables 2.4 to 2.6 show that only the secant method refuses

to converge for all resistive tapers. A value for w is listed for the secant method because

the second guess is found from the relaxation formula. It is also quite slow for the tapered

resistive strips. The relaxation method did not converge for perfectly conducting strips

when w > 1. Thus, only the secant method is discarded as a potential candidate.

As for numerical errors, all the methods provide an adequate representation of the

current for the cases in this thesis. The iterative methods have the advantage of limiting

numerical errors to only the last iteration. Accuracy in all the methods may be improved

by using double precision, if necessary.

The speed of the algorithms are measured by counting the total number of FLOPS

(Floating point Operations) needed to find the strip current for one angle of incidence. For

the iterative methods, the total number of FLOPS = number of iterations to convergence

times the number of FLOPS per iteration. Table 2.7 gives that type of information. Plug-

ging the numbers from Tables 2.4 to 2.6 into the formulas in Table 2.7 result in a good idea

of how fast these algorithms are.

S&&- V *' ' , ~N
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Number of Iterations to Convergence

E-polarization, initial guess is 0, strip is 2A wide, matrix has 24x24 elements

Secant Steffensen's Conjugate
Resistive taper Relaxation Method Iteration Gradient

=1.0 =0.5 w1.0 =0.5 w1.0 w 0.5

7= 0 * 15 113 171 10 9 12
7=i 7 8 7 7 3 3 5
s7=2 5 7 4 4 2 2 4

-- = r 22 9 24 26 5 4 7

E-polarization, initial guess is PO, strip is 2A wide, matrix has 24x24 elements

Secant Steffensen's Conjugate
Resistive taper Relaxation Method Iteration Gradient

-1.0 w=0.5 =.0 =0.5 =I.0 w-0.5

-* 14 227 113 9 8 10
17=1 6 5 6 6 3 4 4
q =2 4 4 4 4 2 2 3

17 = 20 8 48 48 5 5 7

w is the relaxation constant for relaxation
* means the method diverges

Table 2.4 - The number of iterations until convergence Is listed for the iterative methods

and conjugate gradient when the Incident field is E-polarized and the matrix has 24 x 24

elements.

16e ee Pr 
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Nuzmber of Iterations to Convergence I
H-polarization, initial guess is 0, strip is 2A wide

Secant Steffensen's Conjugate
Resistive taper SOR Method Iteration Gradient

=1.0 1w =0.5 w=1.0 w 0.5 u;=1.0 1w =0.5 _ _ _

*7= 298 ** 49 87 13
7 =1 8 13 6 6 4 4 6

q=25 9 4 4 2 2 4
77=x2 160 87 95 49 11 10 13

H-polarization, initial guess is PO, strip is 2A wide

Secant Steffensen's Conjugate
Resistive taper SOR Method Iteration Gradient

W=l.0 W=0.5 W=1.0 w=0.5 w =1.0 W =0.5

*7 =5 0 39 69 13
17=16 8 5 6 4 6 5
q=23 5 4 4 2 2 3

17z2 107 38 188 71 5 5 10

w is the relaxation constant for SOR
*means the method did not converge

Table 2.5 - The number of Iterations until convergence is listed for the iterative methods

and conjugate gradient when the incident field is H-polarized and the matrix has 24 x 24 I

elements.
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Number of Iterations to Convergence

E-polarization, initial guess is 0, strip is 8A wide, matrix has 96x96 elements

relaxation Secant Steffensen's Conjugate
Resistive taper constant Relaxation Method Iteration Gradient

q = 0 w=.32 22 s 16 26
17 = 1 w=.6 8 14 3 7
q = 2 W=.8 5 6 3 5
,7 = w =.45 14 61 6 12

E-polarization, initial guess is PO, strip is 8A wide, matrix has 96x96 elements

relaxation Secant Steffensen's Conjugate
Resistive taper constant Relaxation Method Iteration Gradient

17= 0 w=.32 20 s 13 26
17= 1 w=.6 7 10 4 7
q/= 2 w=.8 4 4 2 5

w = 2=.6 18 s 8 12

w is the relaxation constant for relaxation
a means the method converges very slowly (>100 iterations)

Table 2.6 - The number of iterations until convergence are listed for the iterative

methods and conjugate gradient when the incident field Is E-polarized and the matrix has

96 x 96 elements.

% %
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Number of iterations needed to
make the total number of FLOPS

for each technique equal to
the total number of FLOPS for

PLU decomposition and
Technique FLOPS per iteration back-substitution

Relaxation 6N 2 + 5N + 2 N

Secant 12N 2 +13N N

Steffensen's 12N 2 + N + 4 N

Conjugate gradient 18N 2 + 16N N

a. The technique is listed in the first column, the number of FLOPS per iteration
is listed in the second column, and column 2 times column 3 approximatelly
equals the total number of FLOPS in PLU decomposition and back-substitution.

Technique Total number of FLOPS

PLU Decomposition 1(8N2 + 30N2 + 38N)

Back-substitution 3N 2 + N

PO 9N + 4 + 4 Trig. function evaluations

b. Number of FLOPS for PLU decomposition, back-substitution, and PO are listed.

Table 2.7 - The number of Floating Point Operations (FLOPS) are listed for

the various methods given a matrix with N xN elements.

-r- R %* I ' I
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PLU decomposition and back-substitution produces the fastest results for the matrices

encountered in this thesis for two reasons. First, the matrices are generally small (less

than 100x100 elements). The total number of real multiplications for PLU decomposition

and back-substitution and tle iterative methods and conjugate gradient are equal at about

100 x 100 elements. Below this point PLU decomposition and back-substitution is fastest

and above this point iterative methods and conjugate gradient are the fastest. Second, the

PLU decomposition and back-substitution only has to be calculated for one angle when

solving for the backscattering pattern. The remaining angles only require backsubstitution,

which takes far less time than a single step in any of the iterative methods.

Table 2.7a compares the number of real operations required for the iterative methods

and conjugate gradient. It also shows the number of iterations that will produce the same

number of total operations as PLU decomposition and back-substitution, back-substitution

alone, and P. Using the PO current as an initial guess adds a very small number of

multiplications to the iterative methods. Although the total number of multiplications

for PLU decomposition and back-substitution is large, the number of multiplications for

backsubstitution alone is very small. This feature makes PLU decomposition and back-

substitution attractive for calculating backscattering patterns.

The main motivation for trying iterative methods in this thesis is to find out if the PO

current results in a good first guess. Tables 2.4 to 2.6 compare the methods for convergence

speed. The results indicate that PO contributes little to speeding the convergence of the

algorithms compared to using 0 as the first guess. PO fails to be an excellent first guess, be-

cause it models only the real part of the current and not the imaginary part. Consequently,

approximately the same number of steps are needed to converge for the imaginary part as

for the real part with an initial guess of 0. Perhaps some good guess for the imaginary part

of the current would possibly speed up the iteration.

As already mentioned, the current from the previous backscattering angle is an excellent

first guess of the current at the angle presently being calculated. This guess gets better

as the increment between angles gets smaller. For one degree increments, this first guess

results in a 3 to 4 fold savings in the number of iterations to convergence, compared to

starting with 0 as the initial guess.

%'
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If the matrix were large enough to justify using a technique other than PLU decom-

position and back-substitution, then one of the other techniques must be decided upon.

Relaxation is the fastest of the remaining techniques, but is very sensitive to the value of

w. The sensitivity seems to increase as the size of the matrix increases and as the strip

resistivity decreases. If the maximum eigenvalue is known, then Wont can be calculated, oth-

erwise calculating the maximum eigenvalue is not worth the trouble and one of the other

techniques should be used.

Steffensen's acceleration also relies upon the value of w, but as can be inferred from

Tables 2.4 to 2.6, is far less sensitive to this value than relaxation. 'When the strip resistivity

is close to 0, then w should be small. As the strip resistivity increases, then the value of

w should also increase. Some approximate formula for finding a good value for W given 0

the strip resistivity of the strip and the size of the matrix could probably be found, but is

not pursued here. This method is more stable than relaxation and faster than conjugate -,

gradient, but still requires calculating a value for W.

Conjugate gradient is slower than relaxation or Steffensen's acceleration, but is guar-

enteed to converge in N steps and does not require the calculation of W. A conjugate

gradient FFT method [Sarkar, Arvas, and Rao, 1986] is very attractive for large matrices,

because it has all the advantages of conjugate gradient plus significant savings in storage

requirements.

2.4 Calculating the Radar Cross-Section (RCS) of a Strip

The scattering patterns of the current distributions are found from (2.1-10) and (2.1-

14). In the far field (p >> z'), the Hankel functions in these equations may be replaced by

the following large argument approximations [Abramowitz and Stegen, 1972]:

H()(klp - z'l) = ejd(.5wrklp - r'l)- eikI" iI (2.4-1)

"H)(kiP - -'I) e -i-(.5rkJp - X'I)-e 'kP- (2.4-2) dk

A two-dimensiona bistatic radar cross section is calculated from "
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( ..).. b In2p E'(P)I2
o) E ( .2 0) (2.4-3)

which for E- and H-polarizations are

OE( = I J,(x')ekx'c 0 5dx'2 (2.4-4)
oaIc /0 .,() 

' ° ¢  2
UH(q) = 2 sin4 J(t/)e le2c054 dxI (2.4-5)

Backscattering RCS assumes 4 = 4o in these equations. Consequently, a new strip current

density is calculated at every angle.

Ordinarily, RCS is given in units of dBsm (decibels above one square meter) or in the

case of a 2-dimensional RCS in dBm (decibels above one meter). Throughout the following

chapters the units of RCS for the strip are given in terms of dBA (decibels above one

wavelength). This type of designation keeps the RCS independent of frequency. Since the a

RCS is independent of the magnitude of the incident field, Ho is given the value of 1.0. As

a result, the RCS equations in dBA are given by

OE(O) =1.961 + lOiogl /a J,(z')e3k'c0Sd-z'  ] dBA (2.4-6)
a0o[sno J . coo

aH(4) =1.961 + jd ]dz' dBA (2.4-7)
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CHAPTER III

SYNTHESIS OF RESISTIVE TAPERS

The major goal of this thesis is to develop a method of synthesizing resistive tapers that

produce desired scattering patterns from strips. 0nly simple tapers, such as parabolic and

edge loading, have been reported in the past. Although these simple tapers do lower the

scattering pattern sidelobes, they do not provide precise control over the scattering patterns W

as antenna aperture tapers provide over an antenna's far field pattern.

An extremely effective synthesis procedure for resistive tapers comes from solving the

integral and PO equations for q. Values for q is calculated by substituting a current distri-

bution with known far field pattern characteristics into the equations. The integral equation

approach is very accurate, but is complicated to generate and requires a complex strip re-
p

sistivity. The PO approach is not as accurate, but is relatively fast and produces a real

strip resistivity.

This chapter begins with an analysis of simple resistive tapers then moves on to de-

scribe the integral equation and PO synthesis techniques for resistive tapers. Next, the

Taylor current taper that results in a far field pattern with low sidelobes at desired levels

is presented. Finally, the Steyskal-Shore null synthesis technique is presented in a form

that generates a current distribution that produces nulls in the scattering pattern. This

current distribution is related to a resistive taper via the integral equation method, since

the resistive taper has real and imaginary parts. The resistive tapers derived from these

current tapers produce the desired far field scattering patterns from a strip. P

The figures throughout this chapter contain four graphs: 1) normalized strip resistivity

on the strip, 2) strip current density, 3) bistatic scattering pattern for 4o = 900, and 4)

41
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backscattering pattern. When appropriate, each graph has two plots: one for PO and

one for the integral equation approach. The close correspondence between the two plots

demonstrates the validity of the PO synthesis technique.

3.1 Tapering the Strip Resistivity for Low Sidelobes

Past attempts at controlling the scattering patterns from resistive strips include con-

stant and parabolic resistive tapers and edge loading. These forms of resistive tapers do

not provide precise control over the sidelobe level or null locations of far field scattering

patterns. Although superior techniques are presented later, the tapers presented in this

section are the state-of-the-axt.

3.1.1 Resistive Tapers

A strip with a uniform resistive taper

()= r (3.1-1)

has a lower over-all scattering pattern than a perfectly conducting strip, because some of

the incident field energy is converted into heat instead of current. The sidelobe levels do go

down with this taper, but not relative to the main beam. Thus, a constant taper that lowers

the sidelobes by 20dB also lowers the main beam by approximately the same amount.

Figures 3.1 and 3.2 contain graphs of the calculated strip current density and scattering

patterns for a 4A perfectly conducting strip for E- and H-polarization, respectively. The

PO and integral equation plots show good agreement except in the nulls of the PO patterns

and at angular locations far from the main beam. However, when i7=1, the two currents

and corresponding scattering patterns agree much better (Figures 3.3 and 3.4). As the strip

resistivity increases, the two current plots agree even more closely. Figure 3.5b demonstrates

the increased correspondence between the two currents for an E-polarized incident wave with

7=4.0. Notice that the relative sidelobe level of the scattering patterns remains the same

as the strip resistivity increases (Figures 3.5c and ?.5d).

The relative sidelobe level may be lowered by tapering the strip resistivity from a

minimum at the center of the strip to a maximum at the edges. In turn, the current

decreases from the center to the edges, thus lowering the sidelobes. One possible taper is

r'- W
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R(z) = r + b (3.1-2)

a

where r, b, and c are constants and 2a is the width of the strip. When c=1, the taper is

triangular, and when c=2 the taper is parabolic.

Figures 3.6 and 3.7 show the scattering results of a parabolic taper when an E-polarized

plane wave is incident on the strip. The smooth resistive taper produces a smooth current

taper that lowers the sidelobe level. Increasing the resistive taper by changing b from 1.0

to 4.0, causes the relative sidelobe level to go up close to the main beam but down far from

the main beam (Figure 3.7). Another consequence is the main beam gets fatter and its level

goes down.

A third type of taper has a gaussian shape

R( ) =' + b[1 - e(2,n/,] (3.1-3)

This taper is attractive because of its smoothness (It has an infinite number of non-zero

derivatives.). Figures 3.8 and 3.9 show B-polarized results as b increases from 1.0 to 4.0.

These results look similar to the results from the parabolic taper. A slowly varying taper

as in Figures 3.6 or 3.8 produces a very nice scattering pattern with low sidelobes. A very

steep taper as in Figures 3.7 and 3.9 produces a pattern with a wide main beam and high

sidelobes near the main beam but low sidelobes far from the main beam.

3.1.2 Edge Loading

Edge loading, the final type of resistive taper considered, terminates a conductive strip

with a resistive load a distance q from each edge. The purpose of edge-loading is to mask

the edge contribution to the scattering pattern. In effect, the load provides a transition

from the perfectly conducting strip with R=O to free space with R=oo. The length and the

resistivity level of the load determines how smoothly the transition takes place. A perfect

match would occur when the discontinuities on the strip are transparent. At that time the

integral equation and PO current and bistatic scattering pattern for a given angle would be

identical.

A careful choice of the length and strip resistivity of the loads can alter Lhe scattering

patterns in desirable ways. A small constant resistive strip added to the edges of a perfectly

% careful chieo h eghadsrprssiiyo h od A.e hsatrn
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conducting strip lowers the scattering sidelobe level. Increasing the value of the resistive load

beyond a certain value actually raises the sidelobe level, because the scattering contributions

from the loads become very small relative to the contribution from the conducting part of

the strip. At a very high value of strip resistivity, the edge loads have no effect on the

scattering patterns and the strip has the scattering patterns of a perfectly conducting strip

2(a - q) long.

Figure 3.10 shows the E-polarized plots for a 4A strip having constant edge loads of

= .5 a distance of .5A from the edges. Compared with Figure 3.1, the scattering sidelobes

from this strip are lower, but the scattering mainbeam does not change much. Figure 3.11

shows the results when the strip resistivity of the load is increased to 77 = 1.5. Notice that

the width of the main beam increases and the outer sidelobe level goes up compared to

Figure 3.10.

Grating lobes occur in the scattering patterns of an edge-loaded strip, just as they do in

antenna theory. Consider an 8A wide strip, perfectly conducting at the center, and constant

resistive loads (i7=1.0) 2.OA from either edge. Grating lobes in the bistatic scattering pattern

are given by Mailloux's formula [1984] for grating lobes in a subarrayed phased array

O ~= Co-'[?], p =±(, 2, ... ,g) (3.1-4)

or OP = 600 and 900. Figure 3.12c confirms this prediction. Backscattering grating lobes

occur twice as often as the bistatic grating lobes and are predicted from

OP = cos-1 [ p = ±(1, 2,..., 2q) (3.1-5)

or Op = 75.520,600,41 "410, and 900. Figure 3.12d confirms this prediction.

In order to reduce the abrupt discontinuity at the resistive loads and prevent the forma-

tion of grating lobes, the resistive load can be tapered from a small value of strip resistivity

at the conductive part to a large value at the edge. Tapering the subarrays of a phased

array has also been suggested to eliminate grating lobes [Haupt, 1985]. Figures 3.13 and

3.14 show the dramatic improvement to the scattering patterns when the resistive load has

a quadratic taper rather than a constant strip resistivity. The smooth transition between

-MM;-
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the perfectly conducting strip and its load reduces the current spikes at the discontinuity

which in turn reduces the scattering sidelobes. Figure 3.13 has a taper 7= a a distance

of IA from either edge. No grating lobes appear in the scattering patterns and the outer

sidelobes are about 5 dB lower than those of a perfectly conducting strip. Figure 3.14 has

a taper i7 = 4(a a distance of 1A from either edge. Again, no grating lobes appear in the

scattering patterns and the outer sidelobes are about 15 dB lower than those of a perfectly

conducting strip.

3.2 Synthesizing a Resistive Taper

The examples of resistive tapers in the last section demonstrate that some control

over the scattering patterns is possible. Ultimately, one wishes to synthesize a resistive

taper from any current distribution on the strip that leads to a desired scattering pattern.

Antenna theory provides many types of synthesis techniques for relating desired far field

pattern characteristics to the aperture taper of the antenna. Another step is needed in

scattering theory that relates the current taper to the resistive taper.

The objective here is to develop a synthesis technique for relating a current distribu-

tion to a strip resistivity distribution on the strip, then borrow one of the many synthesis

techniques that already exists for relating the desired far field pattern characteristics to

a current taper. This chapter presents two techniques for synthesizing a resistive taper.

The first solves the integral equations for the strip resistivity. This method is more exact

than PO but requires complex resistivities. The second solves the PO equations for the

strip resistivity. This method is not as accurate as the integral equation approach but only

requires real valued resistivities.

3.2.1 Synthesis of a Resistive Taper from the Integral Equations

The strip resistivity for a given cu,_rrent distribution may be found by solving (2.1-11)

or (2.1-15) for 7}.

E-polarization:

=k)-- e P :JZ(r')H(2 )(kIT - x'l)dz] (3.2-1)

H-polarization:

LI, AI
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sin) 15111 os 46 f J-] .h(t'k 'H2(kit - xtI)dtj (3.2-2)

The current distributions come from synthesis techniques in antenna theory (see sections

3.3 and 3.4). If the same numerical integration techniques used to evaluate the current in

(3.2-1) and (3.2-2) as are used to evaluate the current in (2.1-11) and (2.1-15), then the

exact desired current will be found when solving (2.1-11) and (2.1-15).

The strip resistivity derived in this manner is a complex value, which means that not

only does the conductivity of the strip vary, but the real part of c must vary too. As

such, a resistive strip can no longer be modeled by a substrate with an E E', that is

coated with a conductive material. Instead, the real part of the dielectric constant of the

substrate must also vary as a function of position. Some scattering pattern characteristics,

for instance placing a null at a desired angle, are obtained only through modifying the

amplitude and phase of the strip current. Complete control over the amplitude and phase

of the strip current is only possible through a complex strip resistivity. A variable complex

strip resistivity is much more difficult to manufacture than a strip resistivity with a variable

real part and a constant imaginary part. Fortunately, the imaginary part of the resistive

taper is often quite small, as in many low sidelobe tapers. In that case, either the magnitude

or the real part of the resistive taper is sufficient to elicit the desirable characteristics in the

scattering pattern.

3.2.2 Synthesis of a Resistive Taper from Physical Optics

An alternative to solving the integral equations for 7, is to solve the PO equations for

q7. This alternative has its roots in inverse scattering. Boerner [1980], for example, suggests

that PO is the most reasonable approach to inverse scattering problems. He does caution

that PO has limitations such as

1. PO applies to targets with metallic surfaces.

2. PO approximation gets worse as bistatic angle increases.

3. PO dous not account for multiple reflections.

4. PO does not account for creeping waves.

These limitations can be severe for metallic strips. However, as shown in Chapter II,

PO equations also exist for non-metallic surfaces. Although these equations do not account

, .- - € 4 , , , .- - - , - :..' .- .,.'.. ',-,-'.',. :, ,':." :':'':-" p..4
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for multiple reflections from the edges or creeping waves, a smoothly tapered strip resistivity

considerably reduces these effects. Also, the smoothly tapered strip resistivity extends the

accuracy of PO in the bistatic scattering pattern to angles closer to the edges.

The strip resistance is found by solving (2.1-28) and (2.1-29) for 77(x).

E-polarization:

1 e j=cos o .1
J(X) 2sin4o (3.2-3)

H-polarization:

sinoekZCoo¢6 -in o, (3.2-4)

2

Within the limits of accuracy of the PO, these values of 77(x) produce the desired strip

currents which in turn produce the desired scattering pattern. The advantage of using this

technique is quite apparent: it is easy to calculate 77(x) compared to the integral equation

approach.

3.2.3 Relating the Desired Current to the Strip Resistivity

It i- logical to assume that 0o = 0 in the synthesis equations, otherwise an unnecessary

phase shift is required in the current, which means the strip resistivity derived from the

integral equation and PO approaches must be complex. These equations now take the form

E-polarization integral equation:

I___ [ j( ) 1)H(2 )ka* J Jx) ')4 0(kjX - ll)dx' (3.2-5)

H-polarization integral equation:

7) k f g(,) 1 H(2 )(kl - z'l)dz' (3.2-6)
-a- J Jz) kI- x1'

E- or H- polarization PO equation:

71(z)- j ) (3.2-7)

Observe that the leading terms in these three equations are identical and that the PO

equation is the same for both polarizations. If the first terms are dominant, then the three

% " , *.',. 
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equations give nearly the same result. Consequently, the synthesis techniques are relatively

independent of the polarization!

When the resistive taper is first computed, it may have negative or exceptionally high

values. To eliminate any negative real values of strip resistivity, the taper is normalized by

following these steps:

1. Find the smallest value of strip resistivity in the taper and its location, tmin.

2. Assume the minimum strip current density, J,(zmi,), occurs at this point.

3. Specify the minimum value of the strip resistivity, 77min. llrin is typically 0.0.

4. Find a real conversion constant, -y, such that -f produces a current -rJ,(zmin) at the

point Zmin. y is given by one of the following equations:

PO:

-7 = Real{ (3.2-8)
Ja(xmin)2?min + 0.51

Integral Equation E-polarization:

y= Real{ 1 2 (3.2-9)
J.(Xmin77mn +ft a J(')HO2 (k Ix - xz'I)dz'

Integral Equation H-polarization:

Real+ 1
= Jz(zmin)lmin + _kf0aJ(r') 1' ('

2
) (kjzT - z'I)dz'1  (3.2-10)

41-a 1

5. Multiply the derived current distribution by -y and solve for the new values of q

using (3.2-5) to (3.2-7). The new taper has a minimum value of Tqmin and produces the

same relative scattering pattern.

Another important realization is that these synthesis techniques work for the backscat-

tering pattern as well as the bistatic scattering pattern, even though 7(x) is derived for only

the normal incidence angle. At normal incidence (o = 900), the phase of the current across

a resistive strip is nearly constant. The small values for 0 ci'ph in Table 2.2 confirms this

fact, since PO has 0 current phase across the strip for any polarization and strip resistivity

when 00 = 0. Thus, the current phase may be assumed to be zero with reasonable accuracy.

However, as 00 varies from 900, a nearly linear phase shift is produced in the current across

I
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the strip. If the strip had infinite width, the phase shift would steer the main beam of the

scattering pattern to 4 = -qo. This is Snell's law. A linear phase shift across the aperture

is also used to steer the main beam of an antenna. The larger 0o and the smaller the strip,

the less Snell's Law applies, because the edges make a large contribution relative to the

surface. In fact, H-polarization has a traveling current that becomes more dominant near

edge-on incidence [Peters, 1958]. Thus, a "reasonable" variation in 0, should only "steer"

the main beam of the scattering pattern without having much effect on the shape of the

pattern. As a result, we should expect the backscattering pattern to also exhibit desirable

properties at angles other than those near grazing incidence.

3.3 Taylor Low Sidelobe Synthesis Technique

An effective way to control the scattering patterns from a strip is to relate a strip

current density that produces the desired scattering pattern to a resistive taper via (3.2-5)

to (3.2-7). Low sidelobes over a specified angular sector is a very desirable far field pattern

characteristic. Many aperture tapers are available to generate low sidelobes in the far field

for phased array antennas, as well as continuous apertures. Some of the more popular

tapers include Chebychev, Taylor, Binomial, and Bayliss. These tapers have the common

characteristic that the height of the sidelobes decreases or remains constant as the angle

from the main beam increases. Of these, the Taylor current taper [Taylor, 1955] has the

most desirable characteristics.

This aLalysis uses the Taylor amplitude taper to relate the far field pattern to the

current on the strip for two reasons.8  First, it produces very desirable far field pattern

characteristics. The taper limits the first i-1 sidelobes on either side of the main beam to

a height of q dB below the peak of the main beam, while the remaining sidelobes fall-off

exponentially. Second, the taper is smooth with little to no increases in current at the edges.

This advantage is extremely important when using PO, since PO does not take edge effects

into account. Tapers with large increases in current at the edges are difficult to physically

realize (e.g Chebychev).

8 New techniques have been reported that give arbitrary sidelobe topography lEUiot, 1981a and 1985b]. In other
words, each sidelobe of the antenna pattern may be specified at a certain height. Instead of using one of these
methods, more standard low sidelobe taper with the option of placing nulls in the pattern (section 3.3.2) is used
here.
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The current amplitude weights for the Taylor taper are given by[Stutzman and Thiele,

1981]

J5 (z) = [ + 2 f(n)cOs(EE)] (3.3-1)
n=1

where

[( (+ )(i_2_.- j=x-(1 -4 ), Inj <
f~) (ii-i+n)R-i--n =1~)= 0, Inl _I

V A2+(_i-O.5)2 I

n, Inl >

Yi - 1 = number of sidelobes q dB below the main beam

z = distance from center of strip in wavelengths

2a = length of strip in wavelengths

A = 1cosh-'R

R = 1 0 q/2
0

Figure 3.15 shows the resistive taper derived from (3.2-5) and its corresponding induced

current and scattering patterns for a 30dB, ii=6 Taylor current taper on a 4A strip with an

E-polarized incident plane wave. Figure 3.15c shows the desired bistatic scattering pattern

perfectly replicated from the complex strip resistivity. As predicted, the backscattering

pattern bears a rather good resemblence of the desired pattern. Although the backscat-

tering pattern does not go to zero at edge-on incidence, it is about 18dB lower than the

backscattering pattern of the perfectly conducting strip.

A resistive taper may also be synthesized form the same Taylor current taper using PO.

This time, the taper is real-valued. Figure 3.16b is the PO resistive taper. The strip current

density calculated using PO and the integral equation approaches are shown in Figure 3.16a.

These currents agree very closely. The corresponding bistatic scattering patterns are shown

in Figure 3.16c. Notice that the PO and integral equation patterns nearly overlay except

A
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at 00 to 150 observation angles and right at the null locations. The integral equation

backscattering pattern in 3.16d actually resembles the desried Taylor pattern better than

the backscattering pattern in 3.15d. Again, the PO and integral equation approaches agree

very well except at 00 through 150 observation angles and at the null at 300.

Two other ways of getting real-valued resistive tapers are taking the real part of or the

magnitude of the tapers derived from the integral equation formulas. Examples of these

procedures applied to the taper in Figure 3.15 appear in Figures 3.17 and 3.18, respectively.

The scattering patterns closely resemble the far field patterns of the desired Taylor taper.

Of the four methods of getting a resistive taper, the PO approach produced a backscattering

pattern most closely resembling the desired Taylor taper. Consequently, all the low sidelobe

Taylor tapers in the remainder of this thesis are derived from PO.

The PO synthesis technique works equally well for H-polarization (Figure 3.19). The

resistive tapers in Figure 3.16 and 3.19 are identical and the current taper and scattering

patterns are very similar even though the polarizations are orthogonal.

Much lower sidelobes are also possible. Figures 3.21 and 3.22 show the resistive P0

tapers of a 40dB i=12 Taylor current taper for E- and H-polarizations, respectively. The

strip current density and scattering patterns are calculated using the integral equation and

PO approaches and are shown together for comparison. Notice the very close agreement %

between the two approaches.

3.4 Modifying the Current on a Strip for Nulls

Occasionally, nulls at certain angles (particularly at edge-on incidence) in the far field

pattern are desirable in addition to or instead of low sidelobes. This section begins by

describing a technique reported by Shore and Steyskal for placing nulls in the far field 4-

pattern of an array. It is used to place multiple nulls in a bistatic scattering pattern or a

single null in a backscattering pattern. Placing multiple nulls in a backscattering pattern is

desirable in some cases, but is considerably more difficult to do. The problem is discussed

at the end of this section, but not solved.

3.4.1 Nulling by Minimization of Current Perturbations

Although Shore and Steyskal [1982] developed this technique for phased array antennas,
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Figure 3.15 - E-polarized computed scattering results for a 4A resistive strip when 7 Is e

synthesized from a 30 dB n=6 Taylor current taper using the integral equation approach.
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it also works with continuous current sources, in particular current induced in a resistive

strip.

The current distribution on the strip that generates nulls at specified angles in the

bistatic scattering pattern is represented by the quiescent current, J o(x), plus a perturba-

tion, Jo(z)b(z).

J'(X) = Jo(X)(1 + 6 (x)) (3.4-1)

In the far field, this new current produces nulls at M locations

J a

where S(O) is the relative far field pattern. The above integral may then be solved using

mid point integration

N N

S(O,,) = A E Jne jk2°nCOS = A Z(1 + 6,)Jne3"c°°¢", 0 (3.4-3)
n=1 n=1

where

J, -= current that produces nulls in the far field

J, = quiescent current

6 = perturbation to the quiescent current

2a
A = length of current segmentpN

S = far field pattern

Rearranging (3.4-3) into a form amenable to matrix solution yields

N N

Z A b6 ' O.Cjkx sJ h,' °  o-"ej z ca=.. -S(O,), rn Al,...,M (3.4-4)
r,= 1 n= I '

where S,, is the quiescent relative far field pattern.

Now that (3.4-4) is in the form of M equations with N unknowns, where M<N, a least

squares solution is possible. Usually, the minimum norm solution to the matrix equation is

given by,
%C.

* Ca.
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(A t A)z = A t b (3.4-5)

where f is the comp., conjugate transpose of matrix A. The unknown vector, x, is found

using PLU decomposition and back-substitution. For this application, however, M<<N

and a simpler solution is given by

= At(AAt)-lb (3.4-6)

Rather than using PLU decompositition and back-substitution on the N x N matrix (AtA),

the actual inverse of (AAt) - 1 is computed since it is only an M x M matrix compared.

If the current perturbations are minimized in a least mean square sense

N

b,,J' = minimum (3.4-7)
n=1

then the components of (3.4-6) take the form

X =[bl, 62,..., ] T (3.4-8)

b =[S(,b1), S(0 2), ..., S(0kn)] T (3.4-9)

J 1 e Jkzi Co,4I J 2 e jk22 C08461 .. Ne jkZ NCOBS42

A - . 2 ".. . )(3.4-10)

J, e J cosM J 2 ejkZ2coSaM ... JNeJkZNC..¢M

where T is the transpose of the vector.

The minimization in (3.4-7) is, of course, not unique. One other interesting approach

is to have

N

Z IJ6,I2  minimum (3.4-7)

This approach minimizes the perturbations to the far field pattern rather than the pertur-

bations to the current.

Figures 3.22 to 3.24 show examples of the nulling technique using the integral equation

approach to derive the resistive taper. Figure 3.22 is an example of placing nulls at 200 and

S'
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50' in the bistatic scattering patterns of a 4A perfectly conducting strip. The reisistivity is

complex with small variations in the real and imaginary parts. In order to avoid negative

values of strip resistivity, the taper is normalized using the procedure outlined in section

3.2.3. The current still exhibits singularities at the edges, even with the resistive taper. No

nulls appear in the backscattering pattern.

Figure 3.23 shows the scattering results when nulls are placed in a low sidelobe taper.

As before, the nulls are at 200 and 50' in the bistatic scattering pattern. The quiescent

resistive taper is derived from a Taylor current taper using PO.

Figure 3.24 is an example of placing a single null in the backscattering pattern at 00.

The strip current density has large unrealistic variations across the strip. This example

does show, though, that it is at least theoretically possible to place a single null in the

backscattering patterns of strips. The resistive taper derived for backscattering nulls does

not place nulls in the bistatic pattern at 900. They do, however, place a null in the specular

direction of the bistatic scattering pattern calculated at the angle of the null.

3.4.2 Placing Multiple Nulls in the Backscattering Far Field Pattern

Placing multiple nulls in the backscattering far field pattern of a strip is conceivably

possible, but the procedure is considerably more complicated and will only be outlined here.

The problem with placing multiple nulls in the backscattering pattern of a strip is that a

different induced strip current density contributes to the scattering pattern at each angle.

Placing multiple nulls in a bistatic scattering pattern is simpler, because only one strip cur-

rent density distribution contributes to the scattering pattern. The Shore-Steyskal nulling

method places multiple nulls in the far field pattern of one strip current density distribution.

In turn, a resistive taper is synthesized form this strip current density distribution. As the

angle of incidence changes in the backscattering pattern so does the induced strip current

density. The Shore-Steyskal method can calculate a strip current density that places a

single null in the specular direction of a bistatic scattering pattern which also places a null

in the backscattering pattern in the same direction. The same method can also produce a

null in the backscattering pattern in a different direction. However, two different resistive

tapers are needed to produce the two different strip current densities. Since the resistive

taper cannot vary, the Shore-Steyskal method is not adequate for placing multiple nulls in

-. .' %-.,.. ' t, 4" . f ",w~.%4 , W ". t"t% %r "%..r "-% r%, E-.r 'q-r%
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the backscattering pattern.

More than one resistive taper can place a null in the specular direction of a bistatic

scattering pattern. Placing multiple nulls in the backscattering pattern requires finding one

resistive taper that results in nulls in 2 or more specular directions. The strip resistivity

perturbations may be very erratic. Iterative techniques, steepest descent, and non-linear

programming are possible methods to use in finding a resistive taper that causes multiple

nulls in the backscattering pattern.
..
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CHAPTER IV

STATIC RESISTIVITY MEASUREMENTS USING A FOUR-POINT

PROBE

An important step in the manufacturing process of a resistive sheet with a low sidelobe

resistive taper is accurately measuring the sheet resistivity. Errors in the measurement

process manifest themselves as errors in the scattering patterns of the sheet. If the errors

are large enough, then the sidelobes will not meet the tolerances of the desired taper.

Three viable nondestructive techniques for measuring sheet resistivity are four-point

probe, network analyzer, and two-point probe measurements. The four-point and two-point

probe measurements are static measurements, while the network analyzer measurement is

an rf measurement. Other, perhaps more accurate, techniques are available for meab'ring

the sheet resistivity, but they involve destroying the test object. For instance, cutting a

small square from a resistive sheet, painting highly conductive strips on both sides of the

square, then measuring the sheet resistivity with an ohm meter, gives an accurate answer.

This technique is unacceptable because it destroys the sheet.

Four-point probe measurements of sheet resistivity have been of major importance in

semiconductor electronics. The four point probe has two outer probes that insert a known

current on the surface of the sheet and the two inner probes measure a voltage drop due p

to the current. A simple formula then relates the resistance on the sheet to the current

and voltage drop. This method was used to determine the resistivity of the experimental

resistive sheet; hence, it is of most interest here.

Network analyzer measurements of sheet resistivity have been limited. This method is

attractive because the measurement is performed at the frequency of interest. The network U

80
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analyzer determines the reflection coefficient of the material under test which then relates to

the complex dielectric constant of the medium. This method has been successfully applied

to liquids such as water [Stuchly, 1982] and to vegetation such as leaves [ElKayes, 1987].

Wang also used this method to measure the resistivity of a tapered resistive groundplane

[Wang, 1985].

Two-point probe measurements do not provide the accuracy of the four-point probe

measurements. Wang [1985] measured resistive sheets with the two point probe and found

the measurements varied significantly from one measurement to the next. She attributes

this problem to the fact that the measured resistivity depends upon the contact between

the probe and sheet. To help alleviate the problem, she averaged twenty sheet resistivity

measurements to get an estimate of the actual sheet resistivity.

The first part of this chapter describes an analytical technique for finding the sheet

resistivity of a uniform sheet using a four-point probe. Although it is derived for a uniform

sheet, it is used to measure the sheet resistivity of tapered sheets. The second part of

the chapter derives a partial differential equation for the voltage on the resistive sheet and

solves for the voltage using Successive Over Relaxation (SOR). Results of the analytical and

numerical methods are compared. Then, the accuracy of extending the analytical results

to tapered sheets and measurements close to the edges is examined with the numerical

method.

4.1 Analytically Calculating the Sheet Resistivity of a Uniform Resistive Sheet
5%.

from Four-point Probe Measurements

Methods of calculating the static resistivity of materials from four-point probe mea-

surements have appeared in the literature for many years. Valdes [1952] reports theoretical

and experimental results on the effect of electrode spacing on measuring the resistivity of

germanium semiconductor materials. He also gives various theoretical corrections to resis-

tivity measurements on a finite piece of germanium [Valdes, 1954]. Uldir [1954] and Smitb

[1957] provide analytical solutions for finding the resistivity of a surface using image theory.

Although analytical solutions are not developed for tapered resistivities, they can provide

a means of checking numerical algorithms developed for tapered resistive sheets.

--I
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Figure 4.1 is a diagram of a four point probe measurement system with a probe spacing

of s. The probes lie along the y axis and symmetrically about the x axis. A direct current

(I) passes through the outer two probes and a voltage differential (AV) appears between

the inner two probes. One may find the resistivity by knowing the probe spacing, size of

the resistive sheet (2axd), and the voltage and current between the inner and outer probe

respectively.

Assuming the resistive sheet lies in the x-y plane and the resistivity does not vary in

the 0 or z directions, then Gauss' law states that

J JD Tsr q (4.1-1)

and

The voltage drop between terminals 1 and 2 due to the positive current source is given by

1
A] l l jf 2  q d,- = q2 :n 2 (4.1-3)

Likewise, the voltage drop between 1 and 2 due to the negative current source is given by

V,= q In2 (4.1-4)
2lre

The total voltage drop between 1 and 2 is given by the superposition of the results form

(4.1-3) and (4.1-4)

AV V + V= q In2 (4.1-5)
rc

Using (4.1-2), (4.1-5) may be written as

AV = -R.dl pd¢ (4.1-6)

Since R does not vary with 4, it can be taken outside the integral.

3F
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AV Rln2 j Jpd5 (4.1-7)W 0(

AV 11n2 (4.1-8)

R 4r

Solving (4.1-8) for R gives

R AV- r (4.1-9)

Since (4.1-9) is not valid for finite resistive sheets, a correction factor is needed to take into

account the finite size of the resistive sheet. Equations have been developed to sum the

current points and their infinite number of images to find AV between the voltage probes

which are symmetrically placed about the center of the sheet. Assuming that V, I, a, d,

and s are known, the equation for the resistance is [Smits, 1958]

AV-C d-,a) 
.- 0

where Table 4.1 lists the values for C(, !a).

4.2 Numerically Calculating the Resistivity of a Tapered Resistive Sheet

The solution in the preceding section assumes several simplifications to the problem.

First, the probes must lie along the y axis and symnetric about the x axis. Second, the

resistivity must be constant. Neither of the simplifications is possible when measuring the

resistivity of a tapered resistive sheet. In this case, one must resort to a numerical solution

of the static fields.

Static fields have a solenoidal current:

V .J 0 (4.2-1)

Substituting J -GVV into this equation and expanding V into its rectangular represen-

tation yields

OG(, y) OV(r, y) + G(, (' y )  a(x,O y y) +__ V_(x,___y e - 0 (4.2-2)

ax____ _ aV y G y)x, y)r a + 49Y 19 + G(rT, y) 8(2 0)

V p
• ,% - ,, .,. •*,*,*,'**._ ... ,,< ,/ % " t, 9* v'- / a.'_. ' , .%wII .dS . ,'." " , ,"% % " ",V, '1 % .,' V ,.SS . -
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'I

.) ,.

lop

a 2a 2a 2a -

1.0 0.9994
1.25 1.2248
1.5 1.4788 1.4893
1.75 1.7196 1.7238
2.0 1.9454 1.9475
2.5 2.3532 2.3541
3.0 2.4575 2.7000 2.7005

4.0 3.1137 3.2246 3.2248
5.0 3.5098 3.5749 3.5750
7.5 4.0095 4.0361 4.0362
10.0 4.2209 4.2357 4.2357
15.0 4.3882 4.3947 4.3947
20.0 4.4516 4.4553 4.4553
40.0 4.5120 4.5129 4.5129
00 4.5324 4.5324 4.5324

• 
°,.

Table 4.1 - Correction factors for measuring a finite sheet with a four point probe. The

variables are s=probe spacing. 2a=width of sheet, and d=length of sheet. I-

%.-

- . - . . Ii- iI.-I l .- I lI I I



- - .. -- h. - - - - ,s-, ~w~ S "" AL - 7- %. K. V.- . - -

p

86

where G j is the sheet conductivity. Assuming that the resistivity varies only in the

x-direction reduces the above equation to

R( Oa(r) OV(r, Y) + V2V(r, y) = 0 (4.2-3)

For numerical solution, this equation is placed into a finite difference form using fourth order

differencing schemes with equal spacing for the first and second derivatives. The indices

give the location of the grid point, where n is in the x-direction and m in the y-direction.

R(n) [G(n - 2)- 8G(n - 1) + 8G(n + 1) - G(n + 2)112hI

A [V(n - 2,m) - 8V(n - 1,m) + 8V(n + 1,m) - V(n + 2, m)] +12h

1 [16(IVi(n+l,m)+1V(n-1,m)+V(n,m+1)+ V(n,m-l)-60V(n,m))12h2

(V (n+2,m) + V(n - 2,m) + V(n,m+ 2) + V(n,m -2))] 0 (4.2-4)

where

h = grid spacing in x and y directions

n = point along x, n=l,...,N

m = point along y, m=l,...,M

N = number of points along x that lie on the resistive sheet

M = number of points along y that lie on the resistive sheet

Solving this equation for V(n,m) gives

V(n,m) -- j[G(n - 2) - 8G(n - 1) + 8G(n + 1) - G(n + 2)] x

[1(n - 2,m) - 8V(n - 1,m) + 81'(n + 1,m) - l'(n 2, )]4-

.. [16 (1"(n + 1, m) + V(n -1,rn) + V'(n, m + 1) + V'(n, m -1))
60

(v(n + 2,m) -- V(n - 2, m) -- V(n,m + 2) - 1(n,n - 2))] (4.2-5)

Figure 4.2 shows an example of a finite difference grid. The N--4 grid points in the x

direction are spaced h apart, and the M+4 grid points in the y direction are also spaced i

' 72-
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apart. The extra 2 rows and columns of grid points along each edge are necessary to form

the Neumann boundary conditions.

'When G is constant, the first term (4.2-3) becomes zero, leaving the familiar Laplace's

Equation. Actually, if h is chosen small and the difference between G at n-i and n+1 is

small, then this term may also be ignored.

Two voltage source points (+V and -V) are located at the grid points corresponding to

the current probes of the four-point probe. An initial guess for V is the solution of Laplace's

equation for the two-wire transmission line. This initial guess accelerates convergence of

the iterative method.

SOR is an efficient way to iteratively solve this difference equation. It takes the form

VNEW(n, m) = (1.0 - W)VOLD(n, m) + wV (n, m) (4.2-6)

where Vd is calculated from (4.2-5).

The speed of the SOR iterative method depends upon the value chosen for w. The

optimum w is given by (2.3-2). Another way of finding the optimum w is to plot w versus

the number of iterations to convergence. The curve has a sharp minimum af the optimum

w. Both there methods are time consuming.

There are some formulas available for estimating w for the Laplace equation. When the

surface is rectangular w is given by [Varga, 1962]

4
2 + (4.2-7)

2+ - [cos- + coS 2 )"

When the surface is square then [Pearson, 1983]

w=2-2sin(-) (4.2-8)

When m=n and sin - is very small, these two equations are the same.

The boundary conditions for this problem are that the normal component of the deriva-

tive of V at the edges is zero. In order to numerically represent a boundary condition, two

extra rows of grid points on the top, bottom, and two sides of the M x N grid are necessary.

The derivative is estimated by a fourth order approximation which leads to the equation

SW

~ ~ -. ~ ~ ~ ",,-
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(n-2,m=-2) edge of sheet

n%- -r ri - r-rTI r- T- I

-I- L I J -L . j
d I II I I I I I I I i i

,,------.-------------- ------

I I I I , I I I I I I I I I

I 1 . I I I1I I I I .I .

---------------- ,-
L-. ...I . ... g I i I I I I I
' _ _ ' 'I I I ', ', I I '

d -- ------- - --

I I I I I I I I I I I

I , I I I I II

I I j I iJ','-

(n=N+2,M=r+2)

Figure 4.2 - Finite difference grid overlayed on a 2a x d resistive sheet. The Intersections

of the dashed lines are the grid points. The x grid points range from (njn)=(O.O) to

(N,"; iM+1).

In
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at n = 1: 0 -*V(-1,m) = V(3,m) and

V(o,m) = V(2,m) (4.2-9)

Similarly, the other three boundary conditions are

Ov
at n N: 0- V(N -2,m)= V(N+2, m) and

V(N - 1,m) = V(N + 2, m) (4.2-10)
aV

atm 1: v =0--* V(n,-1) =V(n,3) and
Y

V(n,0) = V(n,2) (4.2-11)

aV
atm=M: -=0- V(n,M-2)=V(n,M+2) and

ay
V(n, M - 1) = V(n, M + 1) (4.2-12)

The rows corresponding to n=-1, 0, N+1, and N+2 and the columns corresponding m=-

1, 0, N+1, and N+2 do not lie on the resistive sheet. After each iteration the boundary

conditions (4.2-9) to (4.2-12) update the extra edge points before starting the next iteration.

The sheet current density can be calculated from the voltage by

J~n, ) G~, m) [V(n - 2m)- 8n- 1,m)J L'V~ + 1,m) - Vn+ 2,m)i+

[V(n,m- 2) - 8V(n,m -1) + 8V(,m + 1) - V(n,m + 2)] } (4.2-13)

The current, I, at the voltage source points may be found by integrating J around one

of the voltage source points.

1= J Jdl.

h{ J,(n, m - 2) - J (n,m + 2) + J,(n -2, m) - Ja,(n + 2, m)-

Jy(n - 1,m - 2) - J(n - 1,m + 2) + J,(n - 2,m - 1) - J,(n + 2,m - 1)+

Jy(n + 1,m - 2) - J (n + 1,m + 2) + J(n - 2,m 4- 1) - J,(n + 2,m + 1)+

1 [J.(n - 2,m - 2) + J,(n - 2,m + 2) - J2 (n + 2, m - 2) - J,(n + 2, m + 2)+

Jy(n-2,m -2) + Jy(n -2,m +2)- Jy(n +2,m -2)- Jy(n +2,m + 2)11'2 -14)
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Table 4.2 compares the actual R of a 4A x 4A with the R calculated from (4.1-10) using

AV and I from the numerical solution and C from Table 4.1. The first 3 rows in the table

show the effect of moving the probes (spaced s=.2A apart) from the center of a uniform

resistive sheet toward the edge. Close to the edge, the error in the calculated resistivity is

quite high (20.20%). This large error occurs because the correction factor, C, in (4.1-10)

was derived for measurements made at the center of the sheet.

The next two rows show the importance of close robe spacing. Measurements near the

center do not require close probe spacing, while measurements near the edges do.

Rows 6 and 7 show that edge effects have a greater impact when the edge is parallel to

the line of probes than when the edge is perpendicular to the line of probes.

The remaining rows show the results for resistive sheets with a parabolic resistive taper.

The steepness of the taper had little impact on the error. Unlike the error in the calculations

for the uniform sheet, the error for the tapered sheets increases towards the center of the

sheet where the resistivity is very small. This occurs because the current follows a path of

least resistance which is near the center of the sheet.

Figures 4.3 and 4.4 show the voltage and magnitude of the sheet current density contour

plots when the resistive sheet is 4A x 4A, has a constant resistivity of 2, is divided into a

41 x41 grid, the current source is located at (18,16) and (24,16), and the voltage is measured

between points (20,16) and (22,16). The next two figures (4.5 and 4.6) show the contour

plots when the sheet has an .01 + 3z 2 resistive taper, the current source is at (18,16) and

(24,16), and the voltage is measured between points (20,16) and (22,16). Notice how the

sheet current density contour lines are influenced by the highly conductive center of the

sheet. This influence creates errors in the measurements. The next four figures (Figures

4.7 to 4.10) show the contours when the measurements are done closer to the edge. The

constant and tapered resistive sheets have very similar contours in this case. Although,

some current still leaks through to the center of the tapered sheet.

h.
,h
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source locations AV I Taper (17) Actual R Calculated R % Error

(n,m)

18,21 2.2719 4.9649 constant 2.0 2.0370 1.85
24,21

18,10 2.2878 4.8965 constant 2.0 2.0799 4.00
24,10

18,4 2.4216 4.4843 constant 2.0 2.4039 20.20
24,4

15,21 1.8822 3.9590 constant 2.0 2.0067 0.00
27,21

15,4 2.2487 3.2936 constant 2.0 3.0393 51.97
27,4

4,21 2.2983 4.8033 constant 2.0 2.1300 6.50
10,21

4,4 2.4558 4.2883 constant 2.0 2.5493 27.47
10,4

18,10 2.1649 34.2168 .01+x 2  0.31 0.2817 9.14
24,10

18,4 2.2970 13.4987 .01+x 2  0.73 0.7575 3.77
24,4

18,10 2.1550 11.7415 .01+3x2  0.92 0.8170 11.19
24,10

18,4 2.2943 4.5592 .01+3x2  2.18 2.2402 2.76
24,4

18,16 1.9805 60.0656 .01+3x2  0.20 0.1468 26.61
24,16

Table 4.2 - Comparison of the actual R for a 4A x 4A sheet (41 x 41 grid) with that found

by substituting the numerical calculations of A V and I into equation 4.1-10.

% V~P, ~% 5~'~ V~ % 0%~* R
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Figure 4.3 - Voltage contours for a 4A x 4A sheet (41 x 41 grid) with t7 2, the cur'ren~t

source at at (18,16) and (24,16), and A V measured between (20,16) and (22,16).
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CHAPTER V .

EFFECTS OF ERRORS IN THE RESISTIVE TAPER ON THE FARFIELD

.J

SCATTERING PATTERNS

The theoretical low sidelobe resistive tapers derived in Chapter 3 have practical lira- ,

itations. Tolerances in the metal deposition and resistivity measurement processes will ,

introduce a certain range of errors in the resistive taper. These errors are modeled as ran-)

dom and/or correlated and cause the induced surface current density to deviate from the, ?,.

desired surface current density. In turn, the scattering pattern sidelobes differ form those,.

calculated from the no-error resistive taper. The extent of the errors determines the lowest

possible average sidelobe level in the scattering patterns of the strip. .'

'S

This chapter begins with a review of error tolerance theory in electromagnetics. From :

there, the error models for the resistivity, PO and integral equation surface current densities, .-

and bistatic scattering and backscattering patterns are derived. An rms average error level

is calculated and tabulated for several tapered resistive strips. Computer plots show the :

error and error-free resistivity, current density and scattering patterns from the PO and "

integral equation approaches, as well as the isolated contributions from the errors alone.

5.1 Background

Relating errors in a resistive taper to perturbations in the scattering patterns of a strip%

is a new area of study. Similar topics that have been investigated include antenna error

tolerance theory and rough-surface scattering. In particular, phased array error theory,'

provides the most relevant background here. .,e

The classic paper on antenna tolerance theory was written by Ruze [1966]. He theo-

retically and experimentally modeled the impact of surface errors on the gain and far field "i

100
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pattern of a reflector antenna. The reflector is divided into N correlated regions with any
one region being statistically independent from any other region. These correlation regions S

(dents in the reflector) are assumed to cause normal- or Gaussian-shaped distortions to the

phase front. Their impact on the far field pattern is a function of the number and size of

dents as well as the size and efficiency of the antenna aperture. Further extensions of this .4

work have appeared more recently in the literature [Tripp, 1984].

The Ruze model takes into account phase errors in the aperture distribution, but not

amplitude errors. Although a phase error model applies when the strip has wrinkels or

indentations, or when the resistive taper is complex (as in the nulling problem), the main

impetus here is how errors in the imaginary part of the dielectric constant (real part of the

resistivity) alter the induced surface current density and far field scattering patterns. Errors

in the imaginary part of the permitivity, c", predominantly result in amplitude errors in the

surface current density. As such, past work on the impact of current amplitude errors on

the far field pattern of an antenna has the most application in this situation.

Several sources in the literature analyze the effects of random phase and amplitude

errors in the element excitations of an array on the array's far field pattern [Collin and

Zucker, 1969; Mailloux, 1982 ]. From sampling theory, if N normally distributed random

variables with mean of 0 and variance of 62 are averaged, then the average is normally

distributed with a mean of 0 and a standard deviation of -e. Since the current is tapered,

the random variables do not have equal weighting. To compensate, the variance is also

divided by the taper efficiency. The taper efficiency is a measure of how well the aperture

collimates the radiated energy and is defined as the ratio of the directivity to the directivity

of an identical aperture with uniform amplitude and phase. An array with random phase

and amplitude errors has an average relative sidelobe power level (f 2 ) at a null in the

no-error pattern given by

2 + 62(

wha 
p

where



102 "1

6 =amplitude error variance normalized to unity

62 =phase error variance(in radians)

N =number of elements in array

rt =array taper efficiency

Equation (5.1-1) states that random current errors by themselves (like white noise) have

a flat Fourier Transform with a height of f 2 . The height of the transform is inversely

proportional to the number of samples (N) and the taper efficiency (77t).

Unlike random errors, correlated errors have a response that peaks near the main beam

and dies-off far from the main beam. An example of this type of error occurs when a

scattering pattern is not measured in the far field. The resulting quadratic phase error

across the test object fills-in nulls close to the main beam and expands the main beam.

This error is noticeable in the experimental bistatic scattering results for a tapered sheet in

Chapter 6.

Brookner[1975] gives a formula for the rms relative sidelobe level of the correlated errors

due to subarraying: .

f 2 + 62 (5.1-2)
NJi~t

but the extent of the errors is limited to

N.

-1 1,"
<0< 

where
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52.. =amplitude error variance at the subarray port normalized to unity

6, =phase error variance at the subarray port (in radians)

N. =number of subarrays in array

n, =number of elements in subarray

it =array efficiency

B =angle from array broadside(in radians),,

From the above equations one may conclude that random errors predominantly alter

the far field pattern far from the main beam, whereas correlated errors predominantly alter

the far field pattern close to the main beam. As a result, these equations predict the impact

of the errors on the far field pattern whether only one occurs or both occur.

The effects of surface roughness and changing dielectric properties on scattering patterns

is discussed in the literature [Beckmann and Spizzichino, 1987 ;Ulaby, Moore, and Fung,

1982]. These results apply to scattering from vegetation, earth surface, etc. They are not

as applicable to "hard targets" such as the strip as the above are.

5.2 Modeling Resistivity Errors

Derivations in the resistive taper on a strip (resistivity errors) arise from the man-

ufacturing and resistivity measurement processes. Blotching of the conductive material,

inaccuracies in the deposition process, and possibly quantization errors, if only certain lev-

els of resistivity are possible, limit the accuracy of depositing a fine coat of conductive

material on a thin dielectric substrate having the imaginary part of i7=0. Poor contacts

between the measuring probe and the resistive surface, difficulties with measuring a resistive

taper (Chapter 4), and equipment limitations produce errors in the resistivity measurement

process. Accurately determining and classifying the errors in a resistive taper requires ex-

tensive experimental analysis of the manufacturing and measuring processes. In lieu of

such an experimental analysis the errors are theoretically modeled and their impact on the

scattering pattern of a strip are calculated.

%r
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Both error sources depend on the level of resistivity. The metal deposition process

has an associated tolerance that is a function of the resistivity. Accurately depositing a

thick coating of metal to obtain a low resistivity (7 ;- 0) is much easier than accurately

depositing a very sparse coating of metal to obtain a high resistivity (77 t 4). The resistivity

measurement process also has an error that is a function of the resistivity. Because there is a

poor contact between the probes and the surface, accurate measurement of a high resistivity

is much more difficult than a low resistivity, Since both error sources are a function of the

resistivity level, the magnitude of the error should likewise be modeled as a function of the

resistivity. In other words, smaller values of resistivity are prone to smaller errors and larger

values of resistivity are prone to larger errors.

As in antenna theory, it is convenient to classify errors as either random or correlated.

Random or uncorrelated means the errors on one part of the strip are totally independent

from errors on another part of the strip. Correlated means the errors in a certain region

of the strip are related. The region where this relationship holds is called the correlation

region.

The actual resistive taper (7) on a strip is composed of the theoretical taper (77o) plus

perturbations (8) to that taper due to manufacturing errors.

= 77(x) + 6(T) (5.2-1)

The perturbations may be due to either correlated or random errors.

Both the random and correlated error models divide the strip into N small correlation
(U

regions over which the error is constant. On the one hand, the random error model assumes

the errors assigned to the N correlation regions are all statistically independent. On the

other hand, the correlated error model assumes the errors assigned to the N correlation

regions are all related by a function. The two models are described in greater detail in the

following subsections.

5.2.1 Modeling Random Errors in the Resistive Taper

Random errors are assumed to follow a normal probability density function (pdf) with

a mean of 0.0 and a standard deviation of 0'k7o(M), where a, is a constant between 0.0 and

0.3. The upper limit of 0.3 is due to the definition of standard deviation. Since 99% of

-,N"% . .
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the samples of a normal pdf are within 3 standard deviations on either side of the mean

and since the negative values of resistivity are not allowed, then 7o(z) - 31k7bo(X) must be

greater than 0. A value of ak=0. 3 allows a small safely margin to insure no negative values

of resistivity are generated.

5.2.2 Correlated errors in the Resistive Taper

Two correlated error models are considered:

1. e(x) =cj- a 7(5.2-2)

2. e(x) =ccosf2ir(L5 ]n) (5.2-3)

where c and q are constants.

These equations are continuous, but their digital implementations are not. Hence, not

only is the whole strip one correlation region, but it is also divided into N smaller correlation r

regions with each region having a constant resistivity. If the N correlation regions are small

enough, then the error function appears continuous and the effects of these correlation

regions are small and can be ignored.

5.3 Modeling Surface Current Density Errors

As with resistivity, the surface current density is separated into a desired surface current

density (Jo) plus a perturbation (a).

J(z)= J.( ) + E(-) (5.3-1)

The desired surface current density arises only from the no-error taper, while the current

perturbation arises only form the resistivity errors. In either case, it should be noted that

the current perturbation is a function of the resistivity perturbation and the quiescent

resistive taper, not just the resistivity perturbation alone.

Errors in the induced surface current density are calculated from the errors in the

resistive taper by two methods: integral equation and physical optics. Both approaches

yield very similar results. The errors are modeled as real numbers, since they occur only in

N'I
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the metal deposited on the substrate and not in the dielectric substrate. The errors may

be either correlated or random.

5.3.1 Integral Equation Formulation of the Current Perturbations

The errors in the surface current density relate to the errors in the resistive taper

via the integral equations derived in Chapter 2. Substituting (5.2-1) and (5.3-1) into the

right-hand-side of (2.1-11) gives

1N

77.(x)J(x)+ 4 J.(x')H - (klx - x'l)dx' = (77o(x) + 6(x))(Jo2,(x) + (a))

fa (Jo,(,') + (x'))H (2 )(klx - T'I)d-' (5.3-2)

This E-polarization equation may be simplified to the form

-o((z) + k ] V(z')H (2)(kiz - x'l)dz' : -,(x)Jo(z) (5.3-3)

The same procedure for H-polarization yields

H(z)W() + 1- H 1(klx - z'l)dx' - -6()Jo(z) (5.3-4)

These equations have the same form as the integral equations in Chapter 2, so they may

be solved with the same numerical methods. All the variables are known except for the

current perturbation.

5.3.2 PO Formulation of the Current Perturbations

The errors in the surface current density relate to the errors in the resistive taper

through the PO equations derived in Chapter 2. For E-polarization the PO surface current

density due to errors in the resistive taper is given by

)sin 'o e ° oa=e7 (5.3-5)
.5 + [,7o(x) + 6(x)]sin~o

Substituting (2.1-29) for Jo(z) and solving for the current perturbations results in

-6(x)sin ¢ 20 °0 €  (5.3-6)
[.5 + 77o()sin&o]2 + b(x)sino[.5 + (x). 4 e (5.3-6)

~ % "a'
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Assuming small resistivity perturbations such that

[.5 + 7o(x)sin~o]2 >> b(z)sino[.5 + io(z)sino,] (5.3-7)

or

1
7.o(x) + 2sin- 6(z) (5.3-8)

An approximation to the surface current perturbation is given by

-6(x)sin4o e (539)
[.5 + 1,(x)sino'e]5

At normal incidence the current perturbation approximately equals the negative of the

resistivity perturbation times the no-error current squared.

~ -(z[JOz 2 - 6(x)___-6(x Jo(x) -[,7(X) + _5'-]2 (5.3-10)

The H-polarization PO current perturbation is derived in the same manner.

C.2; -6(x) sin 0, €o 5--1
[7o() + .5 sin 0o] 2 + ((5)[3-(1) + .5 sin 1)

When the current perturbations are small the equation simplifies to

7,o(x) + sino >> 6(x) (5.3-12)
2

Unlike (5.3-9), this equation has a sin 00 factor in the numerator rather than the denomina-

tor. Thus, as 0o increases, (5.3-8) becomes a better approximation while (5.3-12) becomes

a worse approximation. Care should be exercised when applying this result. When this

approximation is assumed, the current perturbation is given by

= -6(z) sin o (5.3-13)

At normal incidence this equation reduces to (5.3-10).

Equations (5.3-10) and (5.3-13) show that at normal incidence the surface current

perturbation is proportional to the resistivity perturbation, while it is inversely proportional

i :7~.~ - - - - - ' '~' V~'''
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to the square of the resistive taper plus 0.5. In logarithmic form the magnitude of (5.3-10)

is given by

log 1I = log lbI - 2log I(q + .5) (5.3-14)

This form of the equation simply shows that 6 is the dominant contributor for smaller values

of the resistive taper ('7 < - - .5), and '7 is the dominant contributor for larger values of

the resistive taper (q > -. 5) given that r7 + 6 > > .5.

5.4 Modeling Errors in the Scattering Patterns

The RCS of a strip with resistive errors is given by

or = 7 o + O.en (5.4-1)

where o-o is the no-error RCS and a-,. is the RCS due to the errors alone. Substituting the

error currents from section 5.3 into the (2.4-4) and (2.4-5) yields

E-polarization: ."

kE(¢) = j Jo(z) e jk'cohOdz + A N(5.4-2)

H-polarization:

at(e)= sin 2 j
'c 0 /: J0 .(x')e l 8'co4dz' + A N(5.4-3)

where A is the length of the integration region. The deviations in the scattering patterns

may be isolated by completing the squares in the RCS formulas.

E-polarization:

(-a n=1o~z) c°¢x NN

Ak N
2Imaginary - Jo(' )e" cdI } l maginaryl { S

Aa n=

r .. ne . z".c° ' (5J 4o 4 ){t C

45

n=l~yuL~~ I22 1 mgnr ~Ct
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H-polarization: '

4.

'Ap

k si2 a 'V= jokZen . cO°d

2 si 0,Ra .. ,('ek'00z Rea=l E_

a n=1

Ak 2N

4 i-

n=11N

The first term in (5.4-4) and in (5.4-5) is the RCS due to the desired resistive tapers

(a.). The remaining three terms (ae,) are due to the errors in the taper. When the errors

are small, the fourth term has a much lower average level than the other terms. Generally,

the last three terms combined are much smaller than the first. The exception is in the

nulls and low sidelobe regions of the RCS patterns. There, the level of the error terms may

exceed the desired RCS.

5.5 Average Error Levels in the Scattering Patterns Due to Random Resistivity

Errors

No obvious way exists to simply relate the resistivity error level to the current error

level. For small resistive errors at normal incidence, (5.3-10) gives a reasonable estimate for

the PO current error, if 7 and b are replaced by their respective averages. Otherwise, the

average rms current error is found by solving one of the current perturbation equations in

section 5.3 and dividing the sum of the absolute values of the C's by 1VN.

After estimating the average rms current perturbation, two methods are used to find

an estimate of the error levels in the scattering patterns. The first calculates average rms

bistatic scattering (abj) and backscattering (Cbk) errors from the calculated error and no-

error scattering patterns. This method provides accurate error information for all bistatic

angles and for backscattering and may also be used for evaluating the impact of correlated

resistive errors. The second only estimates the error level of the bistatic scattering pattern

at a null in the error-free bistatic scattering pattern. This method is very similar to the
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method used in array theory, (see (5.1-1)). It has the advantage of being much simpler to

calculate than the first method.

5.5.1 Average RMS Errors

The average RMS error is defined by

ZN1 [Zo(i) - ze(i)] 2  (5.5-1)

where

z,, =no-error quantity

Ze =error quantity

N =number of correlated regions

The constant O may be one of the following:

o,,, =average RMS resistivity error

or, =average RMS surface current density error

abi =average RMS bistatic scattering error

abk =average RMS backscattering error

The computer is used to generate random numbers that have a normal pdf with a mean

of 0 and a standard deviation of UN(Z). Since it has already been assumed that the errors

are a function of the resistive taper, the standard deviation for the resistive error at a point

x along the strip it given by

OCN(2X) = O'ki7(X) (5.5-2)

where O'k is a constant such that 0 < Ok < 0.3. When r7(x) = 1 then a,,, Z ak, otherwise,

the two constants differ.

No obvious way exists to accurately predict Orur, Obi, or OYbk from er,., for either the

PO or integral equation approaches. Instead, arur, b1 , and Ubk are found by substituting

the appropriate error and no-error quantities into (5.5-1). Table 5.1 and 5.2 display typical

' i!'
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examples of these quantities for a 4A and a 6A strip. These tables compare the impact

of polarization, type of resistive taper, number of segments, method used to calculate the

surface current density, length of strip, and level of a k on the RMS errors.

The tables bring several observations to light:

1. The integral equation and PO approaches agree much better when ok=.15 than when

'k=.3. Large changes in the resistivity create large discontinuities which is the condition

when PO and the integral equation approaches do not agree as well.

2. The agreement between the two approaches does not increase as the resistivity

increases, because the magnitude of the error is a function of the resistivity. If the magnitude

of the resistive error remains constant as the resistive taper increases, then agreement

between the two approaches does get closer.

3. The magnitude of o,,,, increases as uk and/or 7 increases.

4. O'bi and o'bk are greater for the larger strip than for the smaller strip.

5. The magnitude of Ubk is smaller than ab.

5. As N increases o,,, and r,, approach their limiting values ai 3 obi and Ubk decrease.

In these examples the bistatic scattering and backscattering patterns are calculated at 10

increments form 0' to 900.

One can calculate the average rms RCS error from 0 bi or Ubk by using one of the

following equations:

OE 2 (5.5-2)
A7-2sin2€

Or 7rbsi 0~ (5.5-3)H = 2

where the "b" in ab stands for either "bi" or "bk". This error measurement is > the error

measurement in the next section, because this error measurement takes all three error terms

of (5.4-4) and (5.4-5) into arcount while the ,':rr measurement in the next section only

takes the last term into account.

5.5.1.2 Average RMS Sidelobe Level at a Null in the Error-Free Pattern

This analysis develops simple equations for estimating the average rms bistatic scatter-

ing sidelobe level at a null in the error-free scattering pattern. Consider (5.4-4) and (5.4-5)

at a null in the error-free pattern. In other words when

: . .. t t - : ... . - ,
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E-polarized RMS error averaged over 10 samples D
Integral Physical
Equation Optics

77 N 2a ____ RES O'CUR OrBI aBK 1CUR (
0

B1 ffBK

1.0 40 4A .15 .1575 .1005 .0307 .0273 .0748 .0340 .0254
60 4A .15 .1489 .1007 .0246 .0217 .0702 .0246 .0197

2.0 40 4A .15 .3151 .0662 .0234 .0215 .0553 .0254 .0203
60 4A .15 .2979 .0639 .0186 .0177 .0518 .0186 .0158

30dB W=8 40 4A .15 .0962 .0870 .0215 .0200 .0595 .0252 .0178
Taylor 60 4A .15 .0884 .0946 .0171 .0163 .0545 .0175 .0138

40dB W=12 40 4A .15 .2242 .0840 .0206 .0193 .0571 .0238 .0172
Taylor 60 4A .15 .2078 .0838 .0145 .0142 .0498 .0161 .0124

1.0 40 4A .3 .3125 .2752 .0917 .0788 .1814 .0876 .0642
60 4A .3 .2980 .2867 .0824 .0687 .1683 .0669 .0506

2.0 40 4A .3 .6250 .2119 .0836 .0739 .1519 .0754 .0581
60 4A .3 .5961 .2079 .0724 .0619 .1393 .0588 .0453

30dB W=8 40 4A .3 .1903 .1967 .0542 .0480 .1300 .0581 .0405
Taylor 60 4A .3 .1791 .2296 .0564 .0488 .1240 .0469 .0344

40dB =12 40 4A .3 .4426 .1947 .0576 .0521 .1278 .0587 .0417
Taylor 60 4A .3 .4194 .2040 .0504 .0449 .1149 .0436 .0318

1.0 40 6A .3 .3125 .2255 .1173 .1027 .1814 .1412 .0933
60 6A .3 .2980 .2510 .1039 .0907 .1683 .1032 .0743
90 6A .3 .2986 .2877 .1118 .0915 .1678 .0871 .0643

2.0 40 6A .3 .6250 .1824 .1122 .0989 .1519 .1219 .0857

60 6A .3 .5961 .1909 .0939 .0838 .1393 .0877 .0668
90 6A .3 .5972 .2080 .0941 .0784 .1387 .0753 .0574

30dB W=8 40 6A .3 .1903 .1538 .0741 .0661 .1300 .0915 .0613
Taylor 60 6A .3 .1791 .1887 .0726 .0631 .1240 .0732 .0507

90 6A .3 .1888 .2547 .0823 .0692 .1326 .0662 .0476
40dB iI=12 40 6A .3 .4426 .1523 .0762 .0706 .1278 .0985 .0644

Taylor 60 6A .3 .4194 .1712 .0671 .0604 .1149 .0681 .0480
90 6A .3 .4352 .2373 .0770 .0645 .1263 .0639 .0461

Table 5.1 - The average RMS error for a resistive strip when the incident field is

E-polarized

1A ,6x'N
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H-polarized RMS error averaged over 10 samples

Integral Physical
Equation Optics

N 2a Ik CRES O'CUR UBI O
0

BK UCUR UBI UBI(

1.0 40 4A .15 .3125 .1369 .0619 .0531 .1814 .0684 .0625
60 4A .15 .2980 .0982 .0465 .0398 .1683 .0570 .0489

2.0 40 4A .15 .6250 .1301 .0549 .0464 .1519 .0601 .0529
60 4A .15 .5961 .0948 .0400 .0330 .1393 .0503 .0416

I
30dB W=8 40 4A .15 .1903 .0985 .0453 .0426 .1300 .0419 .0429

Taylor 60 4A .15 .1791 .0735 .0329 .0320 .1240 .0365 .0345
40dB W=12 40 4A .15 .4426 .0941 .0434 .0440 .1278 .0416 .0450

Taylor 60 4A .15 .4194 .0713 .0295 .0312 .1149 .0330 .0321

_

1.0 40 4A .3 .1575 .0652 .0258 .0226 .0748 .0247 .0232 .r
60 4A .3 .1489 .0473 .0204 .0178 .0702 .0200 .0180 "0

2.0 40 4A .3 .3151 .0549 .0195 .0167 .0553 .0188 .0169
60 4A .3 .2979 .0428 .0153 .0129 .0518 .0153 .0132

30dB W=8 40 4A .3 .0962 .0488 .0207 .0190 .0595 .0175 .0184 0
Taylor 60 4A .3 .0884 .0347 .0141 .0135 .0545 .0129 .0135 ;1

40dB W=12 40 4A .3 .2242 .0457 .0188 .0193 .0571 .0161 .0175
Taylor 60 4A .3 .2078 .0328 .0126 0137 .0498 .0116 .0116

1.0 40 6A .3 .3125 .1819 .1024 .0874 .1814 .0972 .0911
60 6A .3 .2980 .1299 .0727 .0626 .1683 .0785 .0723
90 6A .3 .2986 .0962 .0560 .0470 .1678 .0744 .0627

2.0 40 6A .3 .6250 .1645 .0906 .0775 .1519 .0846 .0771
60 6A .3 .5961 .1219 .0640 .0545 .1393 .0685 .0607
90 6A .3 .5972 .0933 .0479 .0393 .1387 .0649 .0532

30dB 17=8 40 6A .3 .1903 .1282 .0706 .0675 .1300 .0619 .0659
Taylor 60 6A .3 .1791 .0963 .0508 .0483 .1240 .0521 .0517

90 6A .3 .1888 .0735 .0462 .0435 .1326 .0537 .0481
40dB ?=12 40 6A .3 .4426 .1233 .0726 .0694 .1278 .0635 .0696

Taylor 60 6A .3 .4194 .0914 .0474 .0456 .1149 .0479 .0490
90 6A .3 .4352 .0726 .0428 .0421 .1263 .0511 .0464

IVe

Table 5.2 - The average RMS error for a resistive strip when the incident field is

H-polarized %

Lp
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o([a ') dz'= 0 (5.5-4)
a

where s=z for E-polarization and s=x for H-polarization. Now, the first three terms in both

equations vanish, leaving only the fourth term. Since the H-polarization is the same as the

E-polarization term except for a sin 2 4o, the remaining part of the development is done only

for E-polarization. Expand the fourth term as follows:

N = N N

Z 'neikx-cok - , P= njz.COaO O ~ zmo
71=1 71=1M=

N

- : Z ".2 + S 5jI.nxncs
n=1 n=m

N

E IC 1-, (.5-5)
n=1

where * denotes complex conjugate. Substituting from (5.5-1), E= ICn 12= N fr2 gives

2 = (2a)2 Or,. (5.5-6)O'S'hE = cur' N

2 (2)-, cusin o (5.5-7)

The subscripts binE and binH stand for bistatic scattering level at the null of the error-free

pattern E- and H-polarization, respectively.

* When the strip is perfectly conducting or has a very light resistive taper the scattering

patterns do not have distinct nulls (e.g. Figures 3.1 and 3.2). However, the error sidelobe

level is only of concern when the sidelobes are low or the strip has a heavy resistive taper,

in which case the low sidelobe and large constant resistive tapers do have distinct nulls (e.g.

Figures 3.5 and 3.20).

Sometimes it is of interest to calculate the error sidelobe level relative to the peak of

the main beam. At normal icidence, the peak of the electric field far from the strip is

given by

I J,(')dx' + A C,, -A : S[J,,(xz ) -- (5.5-8)
a n= 1 n=1

%, % %" ..-,,.,.. -,-,.'o",-e' , ,,..:,"':'''..:':':..'. ' .',.:."-'-%,€,;,:.: .:.%: ' %'SLr :-' -
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Since the ,, are normally distributed rv's with a mean on 0, then E, 1v : : 0, and the far

field power pattern at the peak of the main beam (PMB) reduces to

PMB E J02(Q)l (5.5-9)

Dividing (5.5-6) and (5.5-7) by (5.5-9) produces the relative scattering sidelobe level.

7rNa 2

E = c 2 (5.5-10)2ff0 ZZ1 J(z.) '
2H,, sin ¢

.H = cur (5.5-11)
2, FN z .(z.4

5.6 Computer Results

This section presents computer plots depicting the no-error and error resistive tapers,

surface current densities, and scattering patterns for various strips. In addition, the isolated p

error terms for the resistive taper, surface current density, and scattering patterns are shown.

Figure 5.1 delineates the E-polarization integral equation error and no-error results for

a 4A resistive strip with a 40dB 11=12 Taylor resistive taper and k = 0.3. Figure 5.2 shows

the PO results for the same strip with exactly the same resistivity errors. The integral

equation error surface current density is much smoother than the PO error current. Notice

the excellent agreement between the PO and integral equation scattering patterns, though.

Figure 5.3 superimposes the PO and integral equation error terms. The surface current

densities are plots from (5.3-3) and (5.3-6) and the scattering patterns are plots of the last

three terms in (5.4-4).

Decreasing a0 to 0.1 produces a marked decrease in the error perturbations as shown

by the integral equation results in Figure 5.4.

Figures 5.5 to 5.7 show the results for a constant resistive strip with p7 = 2.0 and

ok=0.3 . Even though there are radical changes in the surface current density of the strip,

the scattering patterns show little change. This happens because the original sidelobe level

of the strip is much higher than the scattering pattern due to the error terms.

AV
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Figure 5.1 - Error and no-error plots calculated from the E-polarized integral equation

when the strip is 4A wide. has a 40dB 1=12 Taylor resistive taper, and has random errors

with ak=0.3
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Figare 5.2 - Error and no-error plots calculated using the E-polarized P0 equation when

the strip is 4A wide, has a 40dB Wi=12 Taylor resistive taper, and has random errors with

O'k=
0 . 3
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ii=i2 Taylor resistive taper and random errors with Ok=O.3
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Figure 5.5 - Error and no-error plots calculated from the E-polarized integral equation

when the 4A wide strip has a constant resistive taper (17 = 2.0) and random errors with

ak=0.3
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the 4A wide strip has a constant resistive taper (1 = 2.0) and random errors with ak=0.3

L',-''-%4,- ; - " ' :- -, ;; 4 . < P ; 4 'a ' '



122

-PHYSICAL OPTICS
.. INTEGRAL EMJATIOIN o

VI
CM%

o|

-2.0 0.0 2.0 -2.0 0.0 2.0
X WAVELENGTHS) X (6AWELENGTHS)

a fptse of arface carrent. 0-9 b. Errors in nrMLzed resitivlty
dW to erors In the resisvily

- PHYSICAL OPTICS - PHYSICAL OPTICS
TINTEGRAL EMATON - NTEGRAL EOLTION

..

0 30 60 so 0 30 60 90
p (DEGREES) p (DEGREES)

c- BiMWti scattering pujter pm90~ d. Backucsterino Pawten due to
u to erro in the arf ce currenot erors in tfe fae Urrent
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Figure 5.8 shows the first example of a correlated error using the E-polarized integral

equation. The strip is 4A wide with a 40dB 11=12 Taylor resistive taper and a correlated

error given by (5.2-2) with c=0.2 and q=O. This error produces an even steeper resistive

taper that reduces the sidelobes to a lower level than the no-error taper.

Another example of a correlated error appears in Figures 5.9 to 5.11. The strip is

4A wide with a 40dB fi=12 Taylor resistive taper and a correlated error given by (5.2-3)

with c=.1 and q=4. Figure 5.9 shows the integral equation error and no-error results, while

Figure 5.10 shows the same results for PO. The PO and integral equation error terms appear

alone in Figure 5.11.

Section 5.1 mentions that in array theory random errors primarily alter the sidelobe

level away from the main beam and correlated errors primarily alter the sidelobe level near

the main beam. The same phenomena appears in the figures presented here. For instance,

the random errors in Figures 5.1 and 5.2 raise the sidelobe level uniformly everywhere,

but the correlated errors in Figure 5.9 and 5.10 raise the sidelobe level near the main

beam. When these errors are combined, the error scattering patterns closely resemble the

correlated error patterns near the main beam, while they closely resemble the random error

patterns far from the main beam. Figure 5.12 shows the E-polarization integral equation

and Figure 5.13 shows the PO results for the combined errors. Figure 5.14 shows error plots

of the combined random and correlated errors.

. V.
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CHAPTER VI

EXPERIMENTAL MEASUREMENT OF THE BISTATIC SCATTERING

PATTERNS OF RESISTIVE SHEETS

The theory presented in the previous chapters is more convincing when demonstrated

experimentally. Such an experiment has three main parts: building the strip, measuring

the resistive taper, and measuring the far field scattering patterns. Each of these parts has

difficulties to over-come. For instance, accurately building a low sidelobe resistive taper

requires facilities that are not available, and even if the facilities for building the strip were

available, accurately measuring the resistive taper has limitations as discussed in Chapter

4. Finally, bistatic scattering measurement facilities are not available at the University of

Michigan.

The first part of this chapter tells how the perfectly conducting and resistive sheets

were constructed for the experiment. Next, the experimental set-up is described and the

potential errors in the experiment discussed. Finally, the experimental and theoretical

results are compared and discussed.

6.1 Construction of the Strips

There were three alternatives to constructing a tapered resistive strip: 1) build it in-

house, 2) pay a contractor to build it, and 3) ask a contractor to donate a tapered resistive

sheet. The first alternative was very unattractive because the Radiation Laboratory does

not have the facilities to accurately build a tapered resistive strip. Had this alternative

been pursued, the strip would have been built by spraying resistive paint on a substrate

that had a dielectric constant close to that of free space. Such an archaic technique would
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probably have proven frustratLg and inaccurate. The second alternative was unattractive

because of the cost. Unfortunately, a graduate student's budget could not quite match the

$50,000+ price tag for buying a tapered resistive strip built to specifications. The final

alternative proved most attractive. Southwall Technologies, Inc. provided a strip that has

an + 2z2 + 5 (tin inches) taper with one edge at a resistivity approximately equal

to 0 and the other a resistivity of 17 > 4.0. Although this taper is not symmetric about

the center of the strip and does not correspond to any of the synthesized Taylor tapers in

Chapter 3, it actually worked quite well for the purposes of this thesis after a few minor

adjustments.

Three samples were prepared for the bistatic measurements:

1) perfectly conducting

2) substrate

3) tapered resistive

Each is 16 inches square or about 4A square at a frequency of 3 GHz.

6.1.1 Perfectly Conducting Sheet

The perfectly conducting strip was cut from a 0.032 inch thick aluminum sheet. Alu-

minum has a dc conductivity of a = 3.54 X 107mhos/m which corresponds to a very low

value of resistivity. It can safely be assumed that 77 = 0.0 on this sheet. This target serves

as a comparison to the tapered sheet and as a calibration target.

6.1.2 Substrate Sheet

A 16 x 16 inch uniform substrate sheet was made of kaptan. The sheet had to be

pieced together in four parts, because the available pieces of substrate were too small to

cut a single 16 x 16 inch sheet. Two of the pieces are 13 x 8 inches and the other two are

2x x 8 inches. They were butted together and joined by Scotch tape to form the 16 x 162

inch sheet.

The dielectric constant of Kaptan is approximately real and the substrate thickness is

0.007 inches. The corresponding high value of 7 results in a very low RCS. The styrofoam

support and Scotch tape have a very low RCS relative to the metal plate and do not have

any noticeable impact on the measurements. The styrofoam and tape can have an effect

on the substrate sheet measurements, though. The effects of the styrofoam support may

eW

-
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be virtually eliminated by measuring the bistatic pattern of the support and background

and subtracting this measurement from the bistatic pattern of the target, support, and

background. Since the tape has a relatively low dielectric constant and has a muct smailler

area than the substrate sheet, it is assumed to have little effect on the main beam of the

scattered field.

6.1.3 Tapered Resistive Sheet

Southwall Techologies sent the tapered sheet in a roll about 6 feet long and 14 inches

wide. The taper was not symmetric about the center. Instead, the taper starts at perfectly

conducting at one edge and gradually increases to a very high resistivity at the other end.

The taper is given by the equation

1

R= IZ4 +2z 2 +5 (6.1-1)
3

where x is in inches and R in nI. Figure 6.1 shows a graph of this taper with x=OA at the

center of the sheet and extending 2A on either side of the center. The sheet was constructed

by sputter depositing indium tin oxide on one side of the kaptan substrate.

This thesis is concerned with symmetrical resistive tapers of strips. To get this sym-

metry, two 16 inch long pieces were cut from the 6 foot roll. Each piece was 14 inches wide,

so it had to be trimmed to 8 inches wide. A thin clear line marked the x=1A position on

the strip. Both strips were trimmed to 4 inches on either side of the center line. These

two pieces were layed flat with the perfectly conducting sides touching. The back (kaptan

side) of the pieces were joined with Scotch tape while the front (metal deposited side) of

the pieces were joined with1 inch copper tape. The resultant sheet was 16 inches square

with a symmetrical resistive taper. A photograph of the tapered sheet appears in Figure

6.2. In the picture, the taper runs horizontally while the copper tape runs vertically.

6.1.4 Mounting the Sheets

A 16 inch square of styrofoam was cut from a larger 14 inch thick piece of styrofoam

using a "hot" wire. Three sides were beveled and sanded to reduce the specular scattering.

A small 6 x 2 x 14 piece of styrofoam served as a support for the larger square piece.

The sheets were mounted on the styrofoam using double sided Scotch tape. This tape

had little effect on the scattering patterns of the tapered sheet and perfectly conducting

- " . -%., ' ,, ,,I ,,% " "., " " " ;."i." .,, -- ", " ,Y k" " ' P "
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Figure 6.1 - Graph of the resistive taper of the 4A x 4A sheet in the x-direction.
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Figure 6.2 -- Photograph of the experimental tapered sheet after it had been

cut and taped together to form a 16 inch square. Note that the sheet is most

conductive at the center.
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sheet, and an unknown effect on the substrate sheet. The aluminum sheet proved to be very

heavy and the double sided tape could not firmly hold it against the styrofoam support. In

order to firmly attach the metal sheet to the support. the corners of the sheet were securely

taped to the styrofoam.

Since the resistive sheets and styrofoam support were light-weight and the mount turned

very smoothly, a small piece of masking tape behind the styrofoam support was sufficient

to hold it to the styrofoam mount in the chamber. On the other hand, the metal sheet

was very heavy and required a lot of masking tape to fimily hold the sheet and styrofoam

support to the mount. The tape has a very low scattering return relative to the metal

sheet and is also subtracted from the measurements with the background. Consequently,

the extra tape should nt have interfered with accurate bistatic measurements.

6.2 Bistatic Scattering Measurements of the Sheets

The experiments were performed at the Rome Air Development Center (RADC) mea-

surement facility at Ipswich, MA. This facility has a bistatic measurement range suited for

the purposes of this thesis.

The range consists of a large rectangular aneochoic chamber with a 6 inch diameter

styrofoam cylinder mount close to one side of the chamber (see diagram in Figure 6.3).

This mount holds the sheet and styrofoam support (photograph in Figure 6.4). A boom

rotates about the center of the mount. Both the mount at one end of the boom and the

transmitting antenna at the other end move with the boom (see picture in Figure 6.5). In

this way, the incident angle of the transmitted energy is always the same. The transmitting

antenna is a 2 foot parabolic dish and is 105 inches away from the target. A stationary

receiving horn is located in one of the walls of the chamber. As the boom rotates the

transmitting antenna and the target, the receiving horn detects the scattered energy from

the target. The scattered signal passes from the horn to a receiver, computer, and recording

apparatus (picture of instrumentation in Figure 6.6). An absorber covered window in the

same wall as the receiving horn allows access to the interior of the chamber to align the

target and bistatic angle with a theodolite.

6.2.1 Alignment
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, ~Figure (1.4 -- Picture of the tapered resistive sheet on tO!) of the styrofoam mount inside ,

the aenochoic chamber r
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Figure 0.5 -- Picture inside of the aenochoic chamber with the transmitting antenna to

the left and the resistive sheet on the support to the right.
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A theodolite was used to align the targets and set the bistatic scattering angles. The

straight edges on the sheets made this process easy. First, the theodolite was made level

with the ground. Then, the test object was examined through the viewing scope to see if

it was aligned both edge-on and at normal incidence. Aligiunent was corrected by either

repositioning the sheet on the styrofoam support or placing small styrofoam wedges under

the styrofoam support.

The theodolite was also used to set the bistatic scattering angle. Since the target and

transmitting antenna rotated together while the receiving antenna is stationary, the angle

of incidence is measured between the target and the boom. The mount could be rotated

independent of the boom to get the desired bistatic angle.
One final alignment was the polarization of the waveguide feed to the parabolic trans-

mitting dish. This was done by setting a level on the waveguide and turning the waveguide

until the desired side was parallel to the ground. The alignment was checked with the

theodolite.

6.2.2 Transmitting Antenna

The transmitting antenna is a 2 foot parabolic dish. This means that the test object

is not in the far field' of the antenna when the frequency is 3 GHz. The test object is 16 r
J,

inches square, and the separation distance is 105 inches. The 2 distance in this case is

128 inches.

A parabolic dish was used instead of a smaller horn because the dish has a much smaller

bearnwidth. The smaller beam width reduces the coupling between the transmitting antenna

and the receiving antenna. Increasing the antenna size also increases the distance to the

far field. The trade-off fell in favor of the larger antenna. Violating the far field criterion in

this case may be viewed as a correlated quadratic phase error across the test object. This

type of error manifests itself in the far field by filling in nulls close to the main beam.

6.2.3 Frequency Selection

The measurenents were done at 3.029GHz for several reasons. First, the strip is 4A

wide, which is the same size as the theoretical results presented in the previous chapters.

9 The accepted far field definition is 2 for most objects. It assumes an approximately constant amplitude

variation and a 22.5 ' phase variation across the test object. This criterion is not strict enough for test objects ,
with low sidelobes, though

.5 * ~ ~ ~ . k . S 5 ~ - ' . 5~.. ... .- s ...

~ ~ %~ j% .. S S.S. S S. ~ * * 5 %"S
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Second, errors such as bumps in the sheets and far field separation between the target

and antennas are less of a problem at S band than at X band, for example. Third, the

measurement range was already configured for S band measurements. Fourth, 3 GHz was

the center frequency of the equipment in use. Finally, at this frequency, the target was

almost in the far field of -he transmitting antenna.

6.2.4 Experimental Procedure

The metal, substrate, and tapered resistive sheets were measured for two bistatic angles 5,

of incidence, 300 and 900, and two polarizations, E and H. It seemed easiest to measure all

the targets at H-polarization first, then measure them again at E-polarization. The sequence

for each target went as follows:

1. Mount the target on the styrofoam support and place the target and support on the

mount.

2. Use the theodolite to align the target and the bistatic angle of incidence at 90'.

3. Take the measurement of the sheet, support, and background and record the data.

4. Use the theodolite to align the target and the bistatic angle of incidence at 300.

5. Take the measurement of the sheet, support, and background and record the data. I

6. Remove the target.

7. Take the measurement of the background and support and record the data. '

8. Use the theodolite to align the styrofoam support to a bistatic angle of incidence at

900.

9. Take the measurement of the background and support and record the data. 1

iO. Have the computer subtract the corresponding support plus background measure-

ment from the target, support, and background measurement and plot the results.

11. Repeat the process for the next target.

An 8 inch diameter metal sphere was also measured after measuring all the targets at

E-polarization. The sphere serves as an extra calibration standard to judge how well the I

measurements were taken.
.%

Once all the targets were measured, the polarization of the transmitting antenna and

receiving horn was switched to E-polarization. Again after measuring the targets at this

polarization, the 8 inch sphere was also measured. I
*1

- ppt~p ~ V ~M 'J ** *~.', '? \s *ptt N 5
&',.'S~ 'V~- .- ' °. V , ... .
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6.2.5 Potential Errors in the Measurements

Errors are bound to creep into any experiment. One of the problems with bistatic

scattering measurements is the relative infancy of the subject. Backscattering measurements

have been done for many years and is a mature area of work, but not so with bistatic

measurements. Even recent review information in the literature on scattering measurements

contain almost no mention of bistatic scattering measurements [Knott, Shaeffer, and Tuley,

1985; Ulaby,...;and Dybdal, 1987].

Several problems peculiar to bistatic scattering measurements done today are

1. Lack of good target calibration information.

2. Measurements are limited in angular extent because of coupling between the trans-

mitting and receiving antennas.

3. Few bistatic measurement ranges, consequently few published results.

These problems will gradually disappear as research in the area increases.

Some potential errors in the bistatic measurements of the metal and resistive sheets are

1. The resistive strips were not perfectly fiat. They were for the most part flat but

had a few bumps that were < 1 inch high, which is well within the Rayleigh criterion for-4

smoothness [Beckmann and Spizzichino, 1987]

bumps < A(6.1-2)
8sino

2. The polarization of the transmitting antenna is only accurate to within ±10.

3. The target was not in the far field of the transmitting antenna.

4. The center of the transmitting antenna was a few inches below the center of the

sheets.

5. The metal sheet was not perfectly square and the resistive sheets had to be joined

together with tape.

6. Equipment errors.

7. Target alignment errors.
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6.3 Comparison of theoretical and experimental results

This section compares the measured bistatic scattering patterns to the theoretical pat-

terns. Although some equipment problems prevent an exact over-lay of the theoretical and

measured patterns, the tapered sheet did result in much lower sidelobes then the perfectly

conducting sheet.

6.3.1 Calibration

The metal plate has a well known scattering pattern and serves as the calibration target.

The theoretical results are plotted to the same dB scale as the experimental results. An

error in the experimental measurements caused an 80 shift in the data as well as a slight

squeezing together of the data points by about 5% . These errors were adjusted for the

calibration target, then the same adjustments were used for the tapered resistive sheet.

6.3.2 Matching the Theoretical Strip Results to the Experimental Plate Results

The experimental bistatic scattering measurements were made on square plates whereas

the theoretical calculations were done for strips. By keeping the bistatic scattering pattern

of interest in the x-y plane, the relative scattering patterns of the plate and strip are the

same. A correction factor is needed to match the theoretical and experimental patterns.

This factor is obtained through assuming a PO current in the z-direction.

In the x-y plane the bistatic RCS of a plate with an E-polarized incident field is given

by

t-.lte o li u 4 r r 2 LE I" 2 
-

- jZ.e-j f Ja (x).cos 4dy'dz 2
Eo4rr 4 E (6.3-1)

where 2a is the width and 2b the length of the sheet. Assuming the current is constant in

the z-direction, this formula reduces to

=S

k a b
U7Eplate(~ = 2  s xI)ej'cO58 4 dy'dz'24v foa bj

IJ k2,faz)e jcos dzi2 (6.3-2)

oEstip(0) + 20log(b) + 9.03 dBsm (6.3-3)

. . .. Q ... . ..
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The RCS given by (2.5-4) and (6.3-2) are identical except for a constant.

H-polarization has a similar result K

UHplate(k) = b2k 2 sin2  I /a J kz'c°s Odz 2 (6.3-4)

= UOHtrip() + 20log(b) + 9.03 dBsm (6.3-5)

In the x-y plane, the bistatic RCS of a plate is found by multiplying the RCS of a strip by

6.3.1 Theory vs. Experiment

The adjustments mentioned in 6.3.1 are applied to the experimental data, then the

experimental data is overlayed on the theoretical results shown in the following figures.

Figure 6.7 shows the experimental and theoretical bistatic patterns from a 4A by 4A
I

metal plate at 3.024 GHz and an E-polarized incident field at an angle of 90'. The ex-

perimental and theoretical results agree very well. Figure 6.8 shows the bistatic scattering -:

patterns when the incident field impinges at an angle of 600. The lobe at 1200 is due to

reflection and the lobe at 2400 is due to forward scattering. H-polarized results for the I

metal plate appear in Figures 6.9 and 6.10.

Figures 6.11 and 6.12 show the E-polarized and H-polarized bistatic scattering pat-

terns of the tapered resistive sheet when the field is incident at 900. The theoretical and

experimental curves align well at the main beam, but the sidelobes differ by 5 dB or more.

Differences in the sidelobe level occur because of several factors. First, the mounting and

construction of the sheet induces unwanted errors. The metal tape running down the center

of the sheet and wrinkles in the sheet add small errors, but can be enough to affect the low "r

sidelobes. Second, even though the sheet alignment was done with a theodolite, so some

error in alignment of the sheet impacts the sidelobe level. Third, background subtraction

becomes more difficult for low sidelobes, since the low sidelobes are closer to the scattering

levels of the background. Fourth, coupling between the transmitting and receiving anten-

nas plays a more critical role in the sidelobe region. Notice how the oscillations in all the '
S,

experimental patterns increase from left to right (from receiving and transmitting anten-
N

nas facing the same way to receiving and transmitting antennas facing each other). The r

V >'
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Figure 6.7 - Comparison of the experimental and theoretical bistatic scattering patterns

from a 4A by 4A metal plate duie to an E-polarized wave incident at 90'.
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Figure 6.8 - Comparison of the experimental and theoretical bistatic scattering patterns
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Figure 6.10 - Comparison of the experimental and theoretical bistatic scattering

patterns from a 4A by 4A metal plate due to an H-polarized wave incident at 600.
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Figure 6.11 - Comparison of the experimental and theoretical bistatic scattering patterns

from a 4A by 4A tapered resistive sheet due to an E-polarized wave incident at 90'.*
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Figure 6.12 - Comparison of the experimental and theoretical bistatic scattering patterns

from a 4A by 4A tapered resistive sheet due to an H-polarized wave incident at 90'.
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Figure 6.14 - Comparison of the experimental and theoretical bistatic scattering patterns

from a 4A by 4A tapered resistive sheet due to an H-polarized wave incident at 60'.
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oscillations are due to coupling between the receiving and transmitting antennas and are

especially dominant in the low sidelobe regions. Fifth, manufacturing errors in the resistive

sheet cause the theoretical taper to differ from the actual taper. Chapter IV discusses some

of the potential resistive measurement errors. Errors also occur in the metal deposition

process. Sixth, the bulging of the scattering mainbeams of the resistive sheet may be due

in part to the small separation distance between the transmitting and receiving antennas.

A smaller antenna would alleviate this problem, but would also contribute more to the

coupling problem, because the smaller antenna has a broader beamwidth.

Figures 6.13 and 6.14 show the E-polarized and H-polarized bistatic scattering patterns

of the tapered resistive sheet when the field is incident at 600. The agreement between theory

and experiment is worse for a 600 incidence angle. The theoretical sidelobe level near 650

is about 10 dB lower than the measured sidelobe level. Both the H-polarized thcoretical

and experimental patterns show a deep null at 1800. On the other hand, the E-polarized

theoretical sidelobes are 10 dB higher than the experimental ones between 1650 and 2050.

The experimental results from the tapered sheet do show a reduction in the sidelobe

level. Better results are possible if some of the errors mentioned above are reduced.
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CHAPTER VII

CONCLUSIONS

This thesis examines ways of eliciting a desired scattering response from a strip by

tapering the surface resistivity on the strip.

7.1 Summary

Both the theoretical and experimental models of the strip consist of a very thin deposit

of metal on a substrate with a dielectric constant close to that of free space. A resistive

taper is formed by varying the amount of metal deposited at different positions on the strip.

Some of the techniques require a complex resistive taper. In other words both the dielectric

constant of the substrate and the conductivity of the metal layer vary with position.

Two methods of calculating the surface current density and scattering patterns of the

strip are PO and integral equation approaches. The integral equation approach results are

more accurate, but more difficult to calculate than the PO results. Collocation with pulse

basis functions forms a system of linear equations that are solved via PLU decomposition

and backsubstitution, iteration, and conjugate gradient. The higher the resistivity, the

fewer collocation points are necessary for an accurate solution. Since PO gives excellent

results for resistive strips, it is used as a seed for the iterative methods. Unfortunately, it

did not speed convergence and PLU decomposition and backsubstitution proved the most

efficient method of solving the linear system of equations.

In the past, controlling scattering patterns -f strips consisted of iterating between vary-

ing the resistive taper and looking at the scatteruig patterns until an acceptable taper was

found. A more efficient way to get the desired response is to synthesize a resistive taper in
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one step. This can be done by solving the PO and integral equations for the surface resis-

tivity in terms of the surface current density. By substituting a current with a known far

field response (e.g. low sidelobe antenna current taper) into the equations, a resistive taper

can be found that gives the desired response. The integral equation synthesis technique

gives a complex taper, while PO gives a real valued taper. Both tapers yield the desired

low sidelobe response when calculating the scattering patterns with the integral equation

approach. A real valued taper is preferred, so the PO approach is best.

It is also possible to synthesize a resistive taper that places nulls in the bistatic and

backscattering patterns of a resistive strip. The resistive taper derived for nulling is complex

and the nulls are much more sensitive to variations in the resistive taper. Consequently,

the integral equation synthesis technique is used instead of the PO synthesis technique.

The dc surface resistivity of a sheet may be measured with a four point probe. This

technique inserts a current into the resistive sheet via two probes and measures the voltage

drop between two other probes. The surface resistivity is calculated with an analytical

expression that uses the current, voltage drop, and a corrcction factor that takes the probe

spacing and size of sheet into account. The correction factor assumes the surface resistivity

is constant throughout the sheet and the measurement is done in the center of the sheet

Measuring a resistive taper on a strip clearly violates both these assumptions. The impact

of the taper and proximity of the edges is taken into account by numerically solving a partial

differential equation for the voltage induced on the sheet.

It was not practical to build or buy a sheet with a resistive taper that gives rise to

a desired low sidelobe current distribution. Southwall Technologies donated a tapered

resistive sheet with a parabolic resistive taper acros. its width. Bistatic scattering patterns

of the tapered sheet and a metal plate of the same size were measured at the RADC Ipswich

measurement range and compared with theoretical results. The tapered sheet produced low

sidelobes in the scattering pattern that agree very well with the theoretical results.

The building of the tapered resistive sheet has errors that keep the experimental and

theoretical results from agreeing exactly. Errors in the resistive taper may be characterized -,

as being either random or correlated. The errors cause the average sidelobe level of the

desired pattern to go up. These errors and their impact can be statistically analyzed to '3
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determine the tolerances necessary to manufacture a resistive taper for a given sidelobe

level.

7.2 Future Work

This thesis only begins to adress the topic of controlling scattering patterns via the

synthesis of a resistive taper. More complex shapes and impedance tapers are logical next

steps. Also, the theoretical work on the measurement of a resistive taper needs to be

expanded and looked at experimentally. Lack of facilities precluded the measurement of

the backscattering patterns of the tapered resistive strip. It would be interesting to compare

the theoretical and experimental results for backscattering. Other topics inciude multiple

nulls in backscattering patterns, experimentally verifying the error theory, and better first

guesses for the iterative methods.
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